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Foreword

ETAPS 2005 was the eighth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new confer-
ences. This year it comprised five conferences (CC, ESOP, FASE, FOSSACS,
TACAS), 17 satellite workshops (AVIS, BYTECODE, CEES, CLASE, CMSB,
COCV, FAC, FESCA, FINCO, GCW-DSE, GLPL, LDTA, QAPL, SC, SLAP,
TGC, UITP), seven invited lectures (not including those that were specific to
the satellite events), and several tutorials. We received over 550 submissions to
the five conferences this year, giving acceptance rates below 30% for each one.
Congratulations to all the authors who made it to the final program! I hope that
most of the other authors still found a way of participating in this exciting event
and I hope you will continue submitting.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a loose confederation in which each event retains its own identity,
with a separate program committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for “unifying” talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2005 was organized by the School of Informatics of the University of
Edinburgh, in cooperation with
– European Association for Theoretical Computer Science (EATCS);
– European Association for Programming Languages and Systems (EAPLS);
– European Association of Software Science and Technology (EASST).

The organizing team comprised:
– Chair: Don Sannella
– Publicity: David Aspinall
– Satellite Events: Massimo Felici
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– Secretariat: Dyane Goodchild
– Local Arrangements: Monika-Jeannette Lekuse
– Tutorials: Alberto Momigliano
– Finances: Ian Stark
– Website: Jennifer Tenzer, Daniel Winterstein
– Fundraising: Phil Wadler

ETAPS 2005 received support from the University of Edinburgh.
Overall planning for ETAPS conferences is the responsibility of its Steering

Committee, whose current membership is:

Perdita Stevens (Edinburgh, Chair), Luca Aceto (Aalborg and
Reykjav́ik), Rastislav Bodik (Berkeley), Maura Cerioli (Genoa), Evelyn
Duesterwald (IBM, USA), Hartmut Ehrig (Berlin), José Fiadeiro
(Leicester), Marie-Claude Gaudel (Paris), Roberto Gorrieri (Bologna),
Reiko Heckel (Paderborn), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (Aachen), Paul Klint (Amsterdam), Jens Knoop (Vienna),
Kim Larsen (Aalborg), Tiziana Margaria (Dortmund), Ugo Mon-
tanari (Pisa), Hanne Riis Nielson (Copenhagen), Fernando Orejas
(Barcelona), Mooly Sagiv (Tel Aviv), Don Sannella (Edinburgh),
Vladimiro Sassone (Sussex), Peter Sestoft (Copenhagen), Michel
Wermelinger (Lisbon), Igor Walukiewicz (Bordeaux), Andreas Zeller
(Saarbrücken), Lenore Zuck (Chicago).

I would like to express my sincere gratitude to all of these people and or-
ganizations, the program committee chairs and PC members of the ETAPS
conferences, the organizers of the satellite events, the speakers themselves, the
many reviewers, and Springer for agreeing to publish the ETAPS proceedings.
Finally, I would like to thank the organizer of ETAPS 2005, Don Sannella. He
has been instrumental in the development of ETAPS since its beginning; it is
quite beyond the limits of what might be expected that, in addition to all the
work he has done as the original ETAPS Steering Committee Chairman and
current ETAPS Treasurer, he has been prepared to take on the task of orga-
nizing this instance of ETAPS. It gives me particular pleasure to thank him for
organizing ETAPS in this wonderful city of Edinburgh in this my first year as
ETAPS Steering Committee Chair.

Edinburgh, January 2005 Perdita Stevens
ETAPS Steering Committee Chair



Preface

The conference on Fundamental Approaches to Software Engineering (FASE)
is one of the European Joint Conferences on Theory and Practice of Software
(ETAPS). As such, it provides a common forum for practitioners and researchers
to discuss theories for supporting and improving software engineering practices
and their practical application in real contexts.

Contributions were sought targeting both pragmatic concepts and their for-
mal foundations which could lead to new engineering practices and a higher level
of reliability, robustness, and evolvability of heterogeneous software federations.

The record submission of 99 research papers and 6 tool demos was the re-
sponse of the scientific community, with contributions ranging from theoretical
aspects, such as graph grammars, graph transformation, agent theory and al-
gebraic specification languages, to applications to industrially used languages,
methods, technologies, and tools, including UML, Web services, product lines,
component-based development, Java, and Java cards.

The scientific program was complemented by the invited lectures of Gérard
Berry on Esterel v7: from Verified Formal Specification to Efficient Industrial
Designs and of Thomas A. Henzinger on Checking Memory Safety with Blast.

The authors of the submissions were from 29 countries, both within Europe
(Belgium, Denmark, Finland, France, Germany, Hungary, Ireland, Italy, Lux-
embourg, Macedonia, Portugal, Spain, Sweden, Switzerland, The Netherlands,
United Kingdom) and outside (Australia, Brazil, Canada, China, India, Japan,
Korea, Pakistan, Russia, Thailand, Tunisia, Turkey, USA). It is a pleasure to
note the increasing number of submissions from eastern Europe and from outside
Europe altogether, showing that FASE is gaining importance as a world-wide
conference.

The help of the Program Committee was invaluable in selecting just 25 papers
(3 of them tool demos) from the large number of high-quality submissions, and
I take the opportunity to thank warmly all its members and the other referees
for supporting the selection process with their precious time.

FASE 2005 was held in Edinburgh, hosted and organized by the School of
Informatics of the University of Edinburgh. Next year FASE will take place in
Vienna (Austria).

Being part of ETAPS, FASE shares the sponsoring and support described by
the ETAPS Chair in the Foreword. Heartfelt thanks are also due to José Fiadeiro
and Perdita Stevens for their great efforts in the global ETAPS organization and
to Don Sannella and his staff for the wonderful job as local organizers.

Finally, a special thanks to the contributors to and participants of FASE,
who in the end are the people making the conference worthwhile.

Genoa, January 2005 Maura Cerioli
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Esterel v7: From Verified Formal Specification to
Efficient Industrial Designs

Gérard Berry

Chief Scientist, Esterel Technologies Member, Academie des Sciences

Synchronous languages were developed in the mid-80’s specifically to deal with
embedded systems. They are based on mathematical semantics and support for-
mal compilation to classical software or hardware languages as well as formal
verification. Esterel v7 is a major industrial evolution of the original Esterel
synchronous language, mostly directed to complex hardware applications. The
language is supported by the Esterel Studio integrated development environ-
ment, which provides a smooth path from verifiable executable specification to
efficient circuit synthesis. The graphical Safe States Machines derived from Es-
terel are also used in the SCADE tool which is widely used for safety-critical
software applications in avionics.

Through the examples of Esterel v7 and SCADE, we discuss the impact
and evolution of formal methods for actual industrial design. In particular, we
discuss some issues that are central for actual applications but are usually either
not considered as such or viewed as too difficult to handle in research or R&D
projects. We demonstrate that the difference between industrial success and
failure often lies in precisely these aspects.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Checking Memory Safety with Blast�

Dirk Beyer1, Thomas A. Henzinger1,2, Ranjit Jhala3,
and Rupak Majumdar4

1 EPFL, Switzerland
2 University of California, Berkeley

3 University of California, San Diego
4 University of California, Los Angeles

Abstract. Blast is an automatic verification tool for checking tempo-
ral safety properties of C programs. Given a C program and a temporal
safety property, Blast statically proves that either the program sat-
isfies the safety property or the program has an execution trace that
exhibits a violation of the property. Blast constructs, explores, and re-
fines abstractions of the program state space based on lazy predicate
abstraction and interpolation-based predicate discovery. We show how
Blast can be used to statically prove memory safety for C programs.
We take a two-step approach. First, we use CCured, a type-based mem-
ory safety analyzer, to annotate with run-time checks all program points
that cannot be proved memory safe by the type system. Second, we use
Blast to remove as many of the run-time checks as possible (by proving
that these checks never fail), and to generate for the remaining run-time
checks execution traces that witness them fail. Our experience shows
that Blast can remove many of the run-time checks added by CCured
and provide useful information to the programmer about many of the
remaining checks.

1 Introduction

Invalid memory access is a major source of program failures. If a program state-
ment dereferences a pointer that points to an invalid memory cell, the program
is either aborted by the operating system or, often worse, the program con-
tinues to run with an undefined behavior. To avoid the latter, one can perform
checks before every memory access at run time. For some programming languages
(e.g., Java) this is done automatically by the compiler/run-time environment.
For the language C, neither the compiler nor the run-time environment enforces
memory-safety policies. CCured [7, 24] is a program-transformation tool for C
which transforms any given C program to a memory-safe version. CCured uses
a type-based program analysis to prove as many memory accesses as possible

� This research was supported in part by the NSF grants CCR-0234690, CCR-0225610,
and ITR-0326577.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 2–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Checking Memory Safety with Blast 3

memory safe, and it inserts run-time checks before the remaining memory ac-
cesses. The resulting, “cured” C program is memory safe in the sense that it
alarms the user if the program was about to execute an unsafe operation. De-
spite the manyfold advantages of this approach, it has two drawbacks: first, the
run-time checks consume additional processor time, and second, the checks give
late feedback, just before the program aborts.

We address these two points by combining CCured with a more powerful,
path-sensitive program analysis. The additional analysis is performed by the
model checker Blast [19]. For each memory access that the type-based analysis
of CCured fails to prove safe, we invoke the more precise, more expensive anal-
ysis of Blast. There are three possible outcomes. First, Blast may be able to
prove that the memory access is safe (even though CCured was not able to prove
this). In this case, no run-time check needs to be inserted, thus reducing the over-
head in the cured program. Second, Blast may be able to generate an execution
trace to an invalid pointer dereference at the considered control location, i.e., an
execution trace along which the run-time check inserted by CCured would fail.
This may expose a program bug, which can, based on the error trace provided
by Blast, then be fixed by the programmer. Third, Blast may time-out at-
tempting to check whether or not a given memory access is always safe. In this
case, the run-time check inserted by CCured remains in the cured program. It is
important to note that Blast, even though often more powerful than CCured,
is not invoked by itself, but only after a type-based pointer analysis fails. This is
because where successful, the CCured analysis is more efficient, and it may also
succeed in cases that overwhelm the model checker. However, the combination
of CCured and Blast guarantees memory-safe programs with less run-time
overhead than the use of CCured alone, and it provides useful compile-time
feedback about memory-safety violations to the programmer.

Blast performs an abstract reachability analysis to check if a given error
location of a C program can be visited during program execution. All paths
of the program are checked symbolically and abstractly, by tracking only some
relevant facts (called predicates) about program variables, instead of the full pro-
gram state. If a path to the error location is found, the path may be due to the
imprecision in the abstraction (a so-called spurious counterexample) or it may
correspond to a feasible program path (a genuine counterexample). In the former
case, additional relevant predicates are discovered automatically to remove the
spurious error trace. The process is repeated, by tracking an increasing number
of predicates, until either a genuine error trace (program bug) is found, or the
abstraction is precise enough to prove the absence of error traces. This scheme of
counterexample-guided predicate abstraction refinement was first implemented
for verifying software by the Slam project [3]. Blast improves on the general
scheme in two main ways. First, relevant predicates are discovered locally and
independently at each program location as interpolants between the past and
the future fragments of a spurious error trace [15]. Second, the discovered new
predicates are added and tracked locally only in those parts of an abstract reach-
ability tree where the spurious error trace occurred (lazy abstraction) [18]. This
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emphasis on parsimonious, nonuniform abstractions renders the analysis scalable
beyond 100,000 lines of code [15].

Much recent interest has focused on the addition of run-time checks to im-
prove the memory safety and security of C programs [2, 12, 21], often coupled with
a static analysis to reduce the run-time overhead by eliminating dynamic checks
[4, 7, 14, 23, 26]. However, to our knowledge, model checking has not been used pre-
viously in the elimination of these run-time checks, even though the model check-
ing of software has been a very active area of research in recent years [1, 3, 6, 8, 11,
13, 20, 22] (for more related work on software model checking, see [17]).

2 The Software Model Checker Blast

We illustrate how Blast combines lazy abstraction and interpolation-based,
localized predicate discovery on the example shown in Figure 1.

Example Program. The program consists of three functions. Function altInit
has three formal parameters: size, pval1, and pval2. It allocates and initializes
a global array a. The size of the allocated array is given by size. The array is
initialized with an alternating sequence of two values, pointed to by the pointers
pval1 and pval2. After the initialization is completed, the last value of the
sequence is the value returned to the caller. Function main is a test driver for
function altInit. It reads in an integer number from standard input and ensures
that it gets a value greater than zero. Then it calls function altInit with the
read value as parameter for the size as well as for the two initial values. Finally,
the stub function myscanf models the behavior of the C library function scanf,
which reads input values. The stub myscanf models arbitrary user input by
returning a random integer value.

Control-Flow Automata. Internally, this program is represented by control-
flow automata (CFA), one for each function of the program. A CFA is a directed
graph, with locations corresponding to control points of the program (program-
counter values), and edges corresponding to program operations. An edge be-
tween two locations is labeled by the instruction that executes when control
moves from the source to the destination; an instruction is either a basic block of
assignments, an assume predicate corresponding to the condition that must hold
for control to go across the edge, a function call with call-by-value parameters
(Blast also handles call-by-reference, but this is omitted from this exposition
for simplicity), or a return instruction. Figures 2 and 3 show the control-flow
automata for the functions main and altInit, respectively.

Memory Safety. We wish to prove that our program is memory safe, in partic-
ular, that there is no null-pointer dereference. In our example, we focus on one
particular pointer dereference in the program: the dereference of the pointer ptr
at the end of the function altInit (on line 19). We wish to prove that along
all executions of the program, this pointer dereference is valid, that is, the value
of ptr is not null. Notice that this property holds for our program: along every
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#include <stdio.h>
#include <stdlib.h>
int *a;

void myscanf(const char* format, int* arg) {
*arg = rand();

}

int altInit(int size, int *pval1, int *pval2){
1: int i, *ptr;
2: a = (int *) malloc(sizeof(int) * size);
3: if (a == 0) {
4: printf("Memory exhausted.");
5: exit(1);
6: }
7: i = 0;
8: while(i < size) {
9: i = i + 1;
10: if (i % 2 == 0) {
11: ptr = pval1;
12: } else {
13: ptr = pval2;
14: }
15: a[i] = *ptr;
16: printf("%d. iteration", i);
17: }
18: if (ptr == 0) ERR: ;
19: return *ptr;
}

int main(int argc, char *argv []){
20: int *pval = (int *) malloc(sizeof(int));
21: if (pval == 0) {
22: printf("Memory exhausted.");
23: exit(1);
24: }
25: *pval = 0;
26: while(*pval <= 0) {
27: printf("Give a number greater zero: ");
28: myscanf("%d", pval);
29: }
30: return altInit(*pval, pval, pval);
}

Fig. 1. The example C program

execution path to line 19, the pointer ptr equals either pval1 or pval2. More-
over, when altInit is called from main, the actual arguments passed to pval1
and pval2 are both pval (line 30). We have allocated space for pval in main
(line 20), and we have already checked that the allocation succeeded (the test
on line 21 and the code on lines 22–23 ensures that the program exits if pval is
null). While the actual reason for correctness is simple, the example shows that
the analysis to prove safety must be interprocedural and path-sensitive.

We have instrumented the program to check for this property (line 18), by
checking whether the pointer ptr is null immediately before the dereference.
In the next section, we will describe how such instrumentations are inserted
automatically by a memory-safety analysis. With the instrumentation, the label
ERR on line 18 is reached if and only if the pointer ptr is null and about to be
dereferenced at line 19. In Figure 3 the error location with label 1#22 is depicted
by a filled ellipse. We now describe how Blast checks that the label ERR (or
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Fig. 2. Control-flow automaton for function main

Fig. 3. Control-flow automaton for function altInit

equivalently, the location 1#22 of the CFA) is not reached along any execution
of the program, and thus proves that the dereference on line 19 never fails.

2#3

2#6

pval = malloc(sizeof(int));

2#8

Pred(pval!=0)

2#7

Pred(pval == 0)

2#14

*pval = 0;

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

2#21

tmp = altInit(*pval, pval, pval);

2#0

return tmp;

2#17

printf("Give...");

2#19

myscanf("%d", pval);

Skip

2#9

printf("Mem...");

2#11

exit(1);

1#1

1#3

a = malloc(sizeof(int) * size);

1#5

Pred(a != 0)

1#4

Pred(a == 0)

1#11

i = 0;

1#13

Pred(i >= size)

1#12

Pred(i < size)

1#24

Pred(ptr != 0) 1#22

Pred(ptr == 0)

1#0

return *ptr;

Skip

1#14

i = i + 1;

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#17

ptr = pval2;

1#18

*(a + i) = *ptr;

1#19

printf("%d. iter...", i);

Skip

ptr = pval1;

1#6

printf("Mem...");

1#8

exit(1);
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Abstract Reachability Trees. In order to prove that the label ERR is never
reached, Blast constructs an abstract reachability tree (ART). An ART is a
labeled tree that represents a portion of the reachable state space of the program.
Each node of the ART is labeled with a location of a CFA, the current call stack
(a sequence of CFA nodes representing return addresses), and a boolean formula
(called the reachable region) representing a set of data states. We denote a labeled
tree node as n : (q, s, ϕ), where n is the tree node, q is the CFA node, s is the
call stack, and ϕ is the reachable region. Each edge of the tree is marked with
a basic block, an assume predicate, a function call, or a return. A path in the
reachability tree corresponds to a program execution. The reachable region of
a node describes an overapproximation of the reachable states of the program
assuming execution follows the sequence of operations labeling the path from
the root of the tree to the node.

Given a region (set of data states) ϕ and program operation (basic block
or assume predicate) op, let post(ϕ, op) be the set of states reachable from ϕ
by executing the operation op. For a function call op, let post(ϕ, op) be the set
of states reachable from ϕ by assigning the actual parameters to the formal
parameters of the called function. For a return instruction op and variable x, let
post(ϕ, op, x) be the set of states reachable from ϕ by assigning the return value
to x. An ART is complete if (1) the root is labeled with the initial states of the
program; (2) the tree is closed under postconditions, that is, for every internal
node n : (q, s, ϕ) of the tree with ϕ �= ∅,

(2a) if q
op−→ q′ is an edge in the CFA of q and op is a basic block or assume

predicate, then there is a successor node n′ : (q′, s, ϕ′) of n in the tree such
that the edge (n, n′) is marked with op and post(ϕ, op) ⊆ ϕ′,

(2b) if q
op−→ q′ is a CFA edge and op is a function call, then there is an op-

successor n′ : (q′′, s′, ϕ′) in the tree such that q′′ is the initial location of
the called function, the call stack s′ results from pushing the return location
q′ together with the left-hand-side variable of the function call onto s, and
post(ϕ, op) ⊆ ϕ′,

(2c) if q
op−→ q′ is a CFA edge and op is a return instruction, then there is an

op-successor n′ : (q′′, s′, ϕ′) in the tree such that (q′′, x) is the top of the
call stack s, the new call stack s′ results from popping the top of s, and
post(ϕ, op, x) ⊆ ϕ′;

and (3) for every leaf node n : (q, s, ϕ) of the tree, either q has no outgoing edge
in its CFA, or ϕ = ∅, or there exists an internal tree node n′ : (q, s, ϕ′) such
that ϕ ⊆ ϕ′. In the last case, we say that n is covered by n′, as every program
execution from n is also possible from n′. A complete ART overapproximates the
set of reachable states of a program. A complete ART is safe with respect to a
CFA location q (the error location) if for every node n : (q, ·, ϕ) in the tree, we
have ϕ = ∅. A complete ART that is safe for q serves as a certificate (proof)
that q cannot be reached by any execution of the program [16].

Figure 4 shows a complete ART for our example program. We omit the call
stack for clarity. Each node of the tree is labeled with a CFA node, and the
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Fig. 4. Complete abstract reachability tree

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

pval != 0

2#14

*pval = 0;

pval == 0

2#9

printf("Mem...");

pval == 0

2#11

exit(1);

pval == 0

pval != 0, *pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false pval != 0, *pval < 1

2#17

printf("Give...");

pval != 0, *pval < 1

2#19

myscanf("%d", pval);

pval != 0

2#14’

Skip

pval != 0

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

pval != 0, *pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

pval != 0, *pval < 1
 COVERED

pval1 != 0, pval2 != 0, size >= 1

1#3

a = malloc(sizeof(int) * size);

pval1 != 0, pval2 != 0, size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

pval1 != 0, pval2 != 0, size >= 1

1#11

i = 0;

pval1 != 0, pval2 != 0, size >= 1

1#6

printf("Mem...");

pval1 != 0, pval2 != 0, size >= 1, i == 0

1#8

exit(1);

pval1 != 0, pval2 != 0, size >= 1, i == 0

pval1 != 0, pval2 != 0, size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false pval1 != 0, pval2 != 0, size >= 1, i == 0

1#14

i = i + 1;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#14’ pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#16’

Pred(i % 2 != 0)

1#15’

Pred(i % 2 == 0)

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#17

ptr = pval2;

pval1 != 0, pval2 != 0,
 size >= 1, i != 0

 COVERED

ptr != 0, pval1 != 0, pval2 != 0,
 size >= 1, i != 0

1#18

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#19

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#11’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

1#14’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

2#21

return *ptr;

false

pval != 0, *pval < 1

2#0

return tmp;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’

ptr = pval2;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#17’’

ptr = pval1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#18’

*(a + i) = *pval;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#19’

printf("%d. iter...", i);

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#11’’

Skip

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#13’’

Pred(i >= size)

1#12’’

Pred(i < size)

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1, i != 0

 COVERED

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

1#14’’

i = i + 1;

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED

pval1 != 0, pval2 != 0,
 ptr != 0, size >= 1

 COVERED
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reachable region is depicted in the associated rectangular box. The reachable re-
gion is the conjunction of the list of predicates in each box. Notice that some leaf
nodes in the tree are marked “COVERED”. Since this ART is safe for the error
location 1#22, this proves that ERR cannot be reached in the program. Notice
that the reachable region at a node is an overapproximation of the concretely
reachable states in terms of some suitably chosen set of predicates. For example,
consider the edge 1#16

ptr=pval2−−−−−−→ 1#17 in the CFA. Starting from the region

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0,

the set of states that can be reached by the assignment ptr=pval2 is

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0 ∧ ptr = pval2.

However, the tree maintains an overapproximation of this set of states, namely,

pval1 �= 0 ∧ pval2 �= 0 ∧ size ≥ 1 ∧ i �= 0 ∧ ptr �= 0,

which loses the fact that ptr now contains the same address as pval2. This over-
approximation is precise enough to show that the ART is safe for the location
1#22. Overapproximating is crucial in making the analysis scale, as the cost of
the analysis grows rapidly with increased precision. Thus, the safety-verification
algorithm must (1) find an abstraction (a mapping of control locations to pred-
icates) which is precise enough to prove the property of interest, yet coarse
enough to allow the model checker to succeed, and (2) efficiently explore (i.e.,
model check) the abstract state space of the program.

Counterexample-Guided Abstraction Refinement. Blast solves these
problems in the following way. It starts with a coarse abstraction of the state
space and attempts to construct a complete ART with the coarse abstraction. If
this complete ART is safe for the error location, then the program is safe. How-
ever, the imprecision of the abstraction may result in the analysis finding paths
in the ART leading to the error location which are infeasible during the execu-
tion of the program. We call such paths spurious counterexamples. In this case,
Blast refines the current abstraction by running a counterexample-analysis al-
gorithm that determines whether the path to the error location is genuine (that
is, there is a bug) or spurious. The counterexample-analysis algorithm uses an
interpolation-based predicate-discovery algorithm which adds predicates locally
to rule out spurious counterexamples [15]. For a given abstraction (mapping of
control locations to predicates), Blast constructs the ART on-the-fly, stopping
and running the counterexample analysis whenever a path to the error location is
found in the ART. The refinement procedure refines the abstraction locally, and
the search is resumed on the nodes of the ART where the abstraction has been
refined. The parts of the ART that have not been affected by the refinement are
left intact. This algorithm is called lazy abstraction [18]; we now describe how it
works on our example.

Constructing the ART. Initially, Blast starts with no predicates, and at-
tempts to construct an ART. The ART construction proceeds by unrolling the



10 D. Beyer et al.

Fig. 5. Abstract reachability tree when the first spurious error path is found

CFAs and keeping track of the reachable region at each CFA node. We start with
the initial location of main, with the reachable region true (which represents an
arbitrary initial data state). For a tree node n : (q, s, ϕ), we construct successor
nodes of n in the tree for all edges q

op−→q′ in the CFA of q. The successor nodes
are labeled with overapproximations of the set of states reachable from (q, s, ϕ)
when the corresponding operations op are performed. To handle function calls
and returns, Blast implements a context-free reachability algorithm [25]. For
our first iteration, since we do not track any facts (predicates) about variable
values, all reachable regions are overapproximated by true (that is, the abstrac-
tion assumes that every data state is possible). With this abstraction, Blast
finds that the error location may be reachable. Figure 5 shows the ART when
Blast finds the first path to the error location. This ART is not complete,
because some nodes have not been processed yet. In the figure, all nodes with
incoming dotted edges (e.g., the node 2#7) have not been processed. However,
the incomplete ART already contains an error path from node 2#3 to 1#22 (the
error node is depicted as a filled ellipse).

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

true

2#14

*pval = 0;

true

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

true

1#1

tmp = altInit(*pval, pval, pval);

true

1#3

a = malloc(sizeof(int) * size);

true

1#5

Pred(a != 0)

1#4

Pred(a == 0)

true

1#11

i = 0;

true

1#13

Pred(i >= size)

1#12

Pred(i < size)

true

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

true

2#21

return *ptr;

2#0

return tmp;
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〈pval, 1〉 = malloc0 ∧ 〈pval, 1〉 �= 0 ∧
〈∗(〈pval, 1〉), 1〉 = 0 ∧ 〈∗(〈pval, 1〉), 1〉 > 0 ∧

}
function main

〈size, 1〉 = 〈∗(〈pval, 1〉), 1〉 ∧
〈pval1, 1〉 = 〈pval, 1〉 ∧
〈pval2, 1〉 = 〈pval, 1〉 ∧

⎫⎬
⎭ formals assigned actuals

〈a, 1〉 = malloc1 ∧ 〈a, 1〉 �= 0 ∧
〈i, 1〉 = 0 ∧ 〈i, 1〉 ≥ 〈size, 1〉 ∧
〈ptr, 1〉 = 0

⎫⎬
⎭ function altInit

Fig. 6. Trace formula for the error path of Figure 5

Counterexample Analysis. At this point, Blast invokes the counterexample-
analysis algorithm which checks if the error path is feasible in the concrete
program (i.e., the program has a bug), or whether it arises because the current
abstraction is too coarse. To analyze the error path, Blast creates a set of
constraints (called the trace formula) which is satisfiable if and only if the path
is feasible in the concrete program. The trace formula is built by transforming
the error path to single-assignment form [10] (every variable is assigned a value at
most once, which is achieved by introducing new variables) and then generating
constraints for each operation along the path. For the error path of the example,
the trace formula is given in Figure 6. Note that in this example, each program
variable occurs only once at the left-hand-side of an assignment; if, for instance,
the program variable pval were assigned a value twice along the path, then the
result of the first assignment would be denoted by the new variable 〈pval, 1〉
and the result of the second assignment would be denoted by the new variable
〈pval, 2〉. The trace formula is unsatisfiable, and hence the error path is not
feasible. There are several reasons why this path is not feasible. First, we set
∗pval to 0 in main, and then take the branch where ∗pval > 0. Further, we
check in main that ∗pval > 0, and pass ∗pval as the argument size to altInit.
Hence, size > 0. Now, we set i to 0, and then check that i ≥ size. This check
cannot succeed, because i is zero, while size is greater than 0. Thus, the path
cannot be executed and represents a spurious counterexample.

Predicate Discovery. The predicate-discovery algorithm takes the trace for-
mula and finds new predicates that must be added to the abstraction in order to
rule out the spurious counterexample. New predicates are obtained at each loca-
tion along the spurious error path using an interpolation procedure. For a pair
of formulas ϕ− and ϕ+ such that ϕ− ∧ϕ+ is unsatisfiable, a Craig interpolant ψ
is a formula such that (1) the implication ϕ− ⇒ ψ is valid, (2) the conjunction
ψ ∧ ϕ+ is unsatisfiable, and (3) ψ only contains symbols that are common to
both ϕ− and ϕ+. Given an appropriate logical theory, such interpolants always
exist [9]. Blast cuts the infeasible path at every location. At each cut point, the
part of the trace formula corresponding to the path fragment up to the cut point
is ϕ−, and the part of the formula corresponding to the path fragment after the
cut point is ϕ+. Then, the interpolant at the cut point represents a formula over
the live program variables that contains the reachable region after the path up
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to the cut point is executed (by property (1)), and is sufficient to show that the
rest of the path is unfeasible (by property (2)). The live program variables are
represented by those new variables which occur both up to and after the cut
point (by property (3)).

For example, consider the cut at location 2#16. For this cut, ϕ− is

〈pval, 1〉 = malloc0∧〈pval, 1〉 �= 0∧〈∗(〈pval, 1〉), 1〉 = 0∧〈∗(〈pval, 1〉), 1〉 > 0,

and ϕ+ is

〈size, 1〉 = 〈∗(〈pval, 1〉), 1〉 ∧ 〈pval1, 1〉 = 〈pval, 1〉 ∧ 〈pval2, 1〉 = 〈pval, 1〉 ∧
〈a, 1〉 = malloc1 ∧ 〈a, 1〉 �= 0 ∧ 〈i, 1〉 = 0 ∧ 〈i, 1〉 ≥ 〈size, 1〉 ∧ 〈ptr, 1〉 = 0.

The only common symbol across the cut is 〈∗(〈pval, 1〉), 1〉, and the interpolant is
〈∗(pval, 1), 1〉 ≥ 1. Relating the new variable 〈∗(pval, 1), 1〉 back to the program
variable ∗pval, this suggests that the fact ∗pval ≥ 1 suffices to prove the error
path infeasible. This predicate is henceforth tracked at location 2#16. Similarly,
at nodes 1#1, 1#3, and 1#5, Blast discovers that the predicate size ≥ 1 is
useful, and at location 1#11, the predicates size ≥ 1 and i = 0 are found.
After adding these predicates, Blast refines the ART, now tracking the truth
or falsehood of the newly found predicates at the locations where they are useful.

Refining the ART. When Blast refines the ART with the new abstraction, it
only reconstructs subtrees that are rooted at nodes where new predicates have
been added. In the example, a second error path is found; Figure 7 shows the
ART when this happens. Notice that this time, the reachable regions are not
all true; instead they are overapproximations, at each node of the ART, of the
reachable data states in terms of the predicates that are tracked at the node. For
example, the reachable region at the first occurrence of location 2#14 in the ART
is ∗pval < 1 (the negation of the tracked predicate ∗pval ≥ 1), because ∗pval
is set to 0 when going from 2#8 to 2#14, and ∗pval < 1 is the abstraction of
∗pval = 0 in terms of the tracked predicates. This more precise reachable region
disallows certain CFA paths from being explored. For example, again at the first
occurrence of location 2#14, the ART has no left successor with location 2#16,
because no data state in the reachable region ∗pval < 1 can take the program
branch with the condition ∗pval > 0 (recall that ∗pval is an integer).

On the second error path, the counterexample analysis discovers the new
predicates pval = 0, pval2 = 0, and ptr = 0. In the next iteration, Blast finds
a third error path, shown in Figure 8, for which it finds the predicate pval1 = 0.

With these predicates, Blast constructs the complete ART shown in Fig-
ure 4. Since this tree is safe for the error location 1#22, this proves that ERR
can never be reached by executing the program. Note that some leaf nodes in
the tree are covered: as no new states can be reached by exploring states from
covered nodes, Blast stops the ART construction at such nodes, and the whole
process terminates.
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Fig. 7. Abstract reachability tree when the second spurious error path is found

2#3 true

2#6

pval = malloc(sizeof(int));

true

2#8

Pred(pval != 0)

2#7

Pred(pval == 0)

true

2#14

*pval = 0;

*pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false *pval < 1

2#17

printf("Give...");

*pval < 1

2#19

myscanf("%d", pval);

true

2#14’

Skip

true

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

*pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

size >= 1

1#3

a = malloc(sizeof(int) * size);

size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

size >= 1

1#11

i = 0;

size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false size >= 1, i == 0

1#14

i = i + 1;

size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

size >= 1, i != 0

1#17

ptr = pval2;

size >= 1, i != 0

1#18

*(a + i) = *pval;

size >= 1, i != 0

1#19

printf("%d. iter...", i);

size >= 1, i != 0

1#11’

Skip

size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

size >= 1, i != 0

2#21

return *ptr;

size >= 1, i != 0

*pval >= 1

2#0

return tmp;
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Fig. 8. Abstract reachability tree when the third spurious error path is found

2#3
true

2#6

pval = malloc(sizeof(int));

true

2#8
Pred(pval != 0)

2#7

Pred(pval == 0)

pval != 0

2#14

*pval = 0;

pval != 0, *pval < 1

2#16

Pred(*pval > 0)

2#15

Pred(*pval <= 0)

false pval != 0, *pval < 1

2#17

printf("Give...");

pval != 0, *pval < 1

2#19

myscanf("%d", pval);

pval != 0

2#14’

Skip

pval != 0

2#16’

Pred(*pval > 0)

2#15’

Pred(*pval <= 0)

pval != 0, *pval >= 1

1#1

tmp = altInit(*pval, pval, pval);

pval2 != 0, size >= 1

1#3

a = malloc(sizeof(int) * size);

pval2 != 0, size >= 1

1#5

Pred(a != 0)

1#4

Pred(a == 0)

pval2 != 0, size >= 1

1#11

i = 0;

pval2 != 0, size >= 1, i == 0

1#13

Pred(i >= size)

1#12

Pred(i < size)

false pval2 != 0, size >= 1, i == 0

1#14

i = i + 1;

pval2 != 0,
 size >= 1, i != 0

1#16

Pred(i % 2 != 0)

1#15

Pred(i % 2 == 0)

1#14’
ptr != 0, pval2 != 0,

 size >= 1

1#16’

Pred(i % 2 != 0)

1#15’

Pred(i % 2 == 0)

pval2 != 0,
 size >= 1, i != 0

1#17

ptr = pval2;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#18

*(a + i) = *pval;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#19

printf("%d. iter...", i);

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#11’

Skip

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#13’

Pred(i >= size)

1#12’

Pred(i < size)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#24

Pred(ptr != 0)

1#22

Pred(ptr == 0)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

1#14’

i = i + 1;

ptr != 0, pval2 != 0,
 size >= 1, i != 0

2#21

return *ptr;

false

pval != 0, *pval < 1

2#0

return tmp;

ptr != 0, pval2 != 0,
 size >= 1

1#17’

ptr = pval2;

ptr != 0, pval2 != 0,
 size >= 1

1#17’’

ptr = pval1;

ptr != 0, pval2 != 0,
 size >= 1

1#18’

*(a + i) = *pval;

ptr != 0, pval2 != 0,
 size >= 1

1#19’

printf("%d. iter...", i);

ptr != 0, pval2 != 0,
 size >= 1

1#11’’

Skip

ptr != 0, pval2 != 0,
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1#13’’

Pred(i >= size)

1#12’’

Pred(i < size)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

 COV

ptr != 0, pval2 != 0,
 size >= 1

1#14’’

i = i + 1;

ptr != 0, pval2 != 0,
 size >= 1

 COV

pval2 != 0,
 size >= 1

1#18’’

*(a + i) = *pval;

pval2 != 0,
 size >= 1

1#19’’

printf("%d. iter...", i);

pval2 != 0,
 size >= 1

1#11’’’

Skip

pval2 != 0,
 size >= 1

1#13’’’

Pred(i >= size)

1#12’’’

Pred(i < size)

pval2 != 0,
 size >= 1, i != 0

1#24’

Pred(ptr != 0)

1#22’

Pred(ptr == 0)

ptr != 0, pval2 != 0,
 size >= 1, i != 0

 COV

3 Checking Memory Safety

A program is memory safe if it only accesses memory addresses within the bounds
of the objects it has allocated or to which it has been granted access. Memory
safety is a fundamental correctness requirement for most applications. We con-
sider one particular aspect of memory safety: null-pointer dereferencing. Pointers
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in C programs can be null (i.e., not pointing to a valid address), or point to an
allocated object. Dereferencing a null pointer can cause an arbitrary value to be
read, or the program to crash with a segmentation fault.

The absence of null-pointer dereferences is a safety property. In principle, we
can annotate every dereference operation in the program with a check that the
dereferenced pointer is not null, and run Blast on the annotated program to
verify that no such check fails. However, this strategy does not scale well. First,
many accesses can be proved memory safe using an inexpensive type-based ap-
proach, and using an expensive analysis like Blast is overkill. Second, each an-
notation should be checked independently, so that the abstractions required to
prove each annotation do not interfere and result in a large state space. There-
fore, we use CCured [7, 24], a type-based memory-safety analysis, to classify
the pointers according to usage and annotate the program with run-time checks.
CCured analyzes C programs with respect to a sound type system which en-
sures that well-typed programs are memory safe. When the type system cannot
prove that a pointer variable is always used safely, CCured inserts run-time
checks in the program which monitor correct pointer usage at execution time.
In particular, each dereference of a potentially unsafe (i.e., not proved safe by
the type system) pointer is annotated with a check that the pointer is non-null.
The run-time checks abort the program safely, instead of running into undefined
configurations. However, each run-time check constitutes overhead at execution
time, and CCured implements many optimizations that remove redundant run-
time checks based on simple data-flow analyses. Typically, the CCured opti-
mizations remove over 50% of the run-time checks inserted by the type system,
and the optimized programs run within a factor of two of their original execu-
tion time. We wish to check how many of the remaining run-time checks can be
removed by the more sophisticated analysis implemented in Blast.

Specifically, for each potentially unsafe pointer dereference ∗p in the program,
CCured introduces a call CHECK NULL(p) which checks that the pointer p is
non-null. The function CHECK NULL terminates the program if its argument is
null, and simply returns if the argument is non-null. Thus, if the actual argument
p at a call site is non-null along all execution paths, then this function call can
be removed without affecting the behavior of the program. To check if a call
to CHECK NULL can be removed from the program, Blast does the following.
First, it replaces the call to CHECK NULL with a call to BLAST CHECK NULL
with the same argument, where BLAST CHECK NULL is the following function:

void __BLAST__CHECK_NULL(void *p) {

if (!p) { __BLAST_ERROR: ; }

}

Second, Blast checks if the location labeled with BLAST ERROR is reachable.
Both steps are performed independently for each call to CHECK NULL in the
program body. Each call of Blast has three possible outcomes.
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The second possible outcome is that Blast produces an error trace that
gives a program execution in which BLAST CHECK NULL is called with a null
argument, which indicates a situation where the run-time check fails. In this case,
the check must remain in the program to terminate the program safely should
the check fail. This may also indicate a program error, in which case the feedback
provided by Blast (the error trace) provides useful information for fixing the
bug. We often encountered error traces of the form that the programmer forgot
to check the return value of malloc: if the memory allocation fails, then the next
dereference of the pointer is unsafe. Blast assumes that malloc may return a
null pointer and discovers the problem. However, not every error trace found by
Blast necessarily indicates a program error, because Blast makes conservative
assumptions about library functions.

There is a third possible outcome, namely, that Blast fails to declare whether
the considered run-time check is superfluous or necessary, due to time or space
limitations. In this case, we say that Blast fails, and we will provide the failure
rate for the experiments below. If Blast fails on a run-time check, then the
check must of course remain in the program. Notice that by changing each call
to CHECK NULL separately, Blast checks if a run-time check is necessary inde-
pendently from all other checks. These checks can be run in parallel and often
lead to different program abstractions.

We ran our method on several examples. The first seven programs are from
the Olden v1.0 benchmark suite [5]. We included the programs for the Bitonic
Sort algorithm (bisort), the Electromagnetic Problem in Three Dimensions (em3d),
the Power Pricing problem (power), the Tree Add example (treeadd), the Trav-
eling Salesman problem (tsp), the Perimeters algorithm (perimeter), and the
Minimum Spanning Tree problem (mst). Finally, we processed the scheduler for
Unix systems fcron, version 2.9.5, and the Lisp interpreter (li) from the Spec95
benchmark suite. We ran Blast on each run-time check inserted by CCured
separately, and fixed a time-out of 200 s for each check; that is, a run of the
model checker is stopped after 200 s with failure, and the studied run-time check
is conservatively declared necessary.

Table 1 presents the results of our experiments. The first column lists the pro-
gram name, the second and third columns give the number of lines of the origi-
nal program (“LOC orig.”) and of the instrumented program after preprocessing
and CCured instrumentation (“LOC cured”). The three columns of “run-time
checks” lists the number of run-time checks inserted by the CCured type sys-
tem (column “inserted”), the number of remaining checks after the CCured
optimizer removes redundant checks (column “optim.”), and finally the num-
ber of remaining checks after Blast is used to remove run-time checks (column

The first outcome is that Blast reports that the label BLAST ERROR is not
reachable. In this case, the function call can be removed, since the corresponding
check will not fail at run time.

“Blast”). The column “proved safe by Blast” is the difference between the
“optim.” and “Blast” columns: it shows the number of checks remaining after
the CCured optimizer which Blast proves will never fail.
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Table 1. Verification of run-time checks

Program LOC run-time checks proved safe potential
orig. cured inserted optim. Blast by Blast errors found

bisort 684 2,510 51 21 6 15 6
em3d 561 2,831 33 20 9 11 9
power 763 2,891 149 24 24 0 24
power-fixed 763 2,901 149 24 24 12 12
treeadd 370 2,246 11 7 6 1 6
tsp 565 2,560 93 59 44 15 4
perimeter 395 2,292 49 18 8 10 5
mst 582 2,932 54 34 19 15 18
fcron 2.9.5 11,994 38,080 877 455 222 233 74
li 6,343 39,289 1,715 915 361 554 11

The remaining checks, which cannot be removed by Blast, fall into two
categories. First, the column “potential errors found” lists the number of checks
for which Blast found an error trace leading to a violation of the run-time
check; those are potential bugs and the error traces give useful information to
the programmer. For example, we took the program with the most potential
errors found, namely power, and analyzed its error traces. In many of them, a
call to malloc occurs without a check whether there is enough memory available.
So we inserted after each call to malloc a null-pointer check to ensure that the
program execution does not proceed in such a case. Analyzing the fixed program
(with null-pointer checks inserted after each malloc), we can remove 12 more
run-time checks. To give an example of the performance of Blast, in the case
of power-fixed, the cured program was checked in 15.6 s of processor time on a
3 GHz Linux machine.

Second, the difference between the columns “Blast” and “potential errors
found” gives the number of run-time checks on which the model checker fails
(times out) without an answer. The number of these failures is not shown ex-
plicitly in the table; it is zero for the first five programs. Since Blast gives no
information about these checks, they must remain in the program.

Acknowledgments. We thank George Necula and Matt Harren for help with
CCured.

References

1. T. Andrews, S. Qadeer, S.K. Rajamani, J. Rehof, and Y. Xie. Zing: A model
checker for concurrent software. In Proc. CAV, LNCS 3114, pages 484–487.
Springer, 2004.

2. T.M. Austin, S.E. Breach, and G.S. Sohi. Efficient detection of all pointer and
array access errors. In Proc. PLDI, pages 290–301. ACM, 1994.

3. T. Ball and S.K. Rajamani. The Slam project: Debugging system software via
static analysis. In Proc. POPL, pages 1–3. ACM, 2002.



18 D. Beyer et al.

4. R. Bodik, R. Gupta, and V. Sarkar. ABCD: Eliminating array bounds checks on
demand. In Proc. PLDI, pages 321–333. ACM, 2000.

5. M.C. Carlisle. Olden: Parallelizing Programs with Dynamic Data Structures on
Distributed Memory Machines. PhD thesis, Princeton University, 1996.

6. S. Chaki, E.M. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. IEEE Trans. Software Engineering, 30:388–402, 2004.

7. J. Condit, M. Harren, S. McPeak, G.C. Necula, and W. Weimer. CCured in the
real world. In Proc. PLDI, pages 232–244. ACM, 2003.

8. J.C. Corbett, M.B. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera: Extracting finite-state models from Java source code. In
Proc. ICSE, pages 439–448. ACM, 2000.

9. W. Craig. Linear reasoning. J. Symbolic Logic, 22:250–268, 1957.
10. R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadek. Efficiently

computing static single-assignment form and the program dependence graph. ACM
Trans. Programming Languages and Systems, 13:451–490, 1991.

11. P. Godefroid. Model checking for programming languages using VeriSoft. In
Proc. POPL, pages 174–186. ACM, 1997.

12. R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access errors.
In Proc. USENIX, pages 125–136, 1992.

13. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. Software Tools for Technology Transfer, 2:72–84, 2000.

14. F. Henglein. Global tagging optimization by type inference. In Proc. LISP and
Functional Programming, pages 205–215. ACM, 1992.

15. T.A. Henzinger, R. Jhala, R. Majumdar, and K.L. McMillan. Abstractions from
proofs. In Proc. POPL, pages 232–244. ACM, 2004.

16. T.A. Henzinger, R. Jhala, R. Majumdar, G.C. Necula, G. Sutre, and W. Weimer.
Temporal-safety proofs for systems code. In Proc. CAV, LNCS 2404, pages 526–
538. Springer, 2002.

17. T.A. Henzinger, R. Jhala, R. Majumdar, and M.A.A. Sanvido. Extreme model
checking. In International Symposium on Verification: Theory and Practice,
LNCS 2772, pages 332–358. Springer, 2003.

18. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
POPL, pages 58–70. ACM, 2002.

19. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with
Blast. In Proc. SPIN, LNCS 2648, pages 235–239. Springer, 2003.

20. G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

21. S. Kaufer, R. Lopez, and S. Pratap. Saber-C: An interpreter-based programming
environment for the C language. In Proc. USENIX, pages 161–171, 1988.

22. M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler, and D.L. Dill. CMC: A
pragmatic approach to model checking real code. In Proc. OSDI. USENIX, 2002.

23. G.C. Necula and P. Lee. Efficient representation and validation of proofs. In Proc.
LICS, pages 93–104. IEEE, 1998.

24. G.C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy
code. In Proc. POPL, pages 128–139. ACM, 2002.

25. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Proc. POPL, pages 49–61. ACM, 1995.

26. N. Suzuki and K. Ishihata. Implementation of an array bound checker. In Proc.
POPL, pages 132–143. ACM, 1977.



Analyzing Web Service Based Business Processes

Axel Martens

Humboldt-Universität zu Berlin,
Department of Computer Sciece, Berlin (Adlershof), Germany

IBM T. J. Watson Research Center,
Component Systems Group, Hawthorne (NY), USA

martens@informatik.hu-berlin.de amarten@us.ibm.com

Abstract. This paper is concerned with the application of Web services
to distributed, cross-organizational business processes. In this scenario,
it is crucial to answer the following questions: Do two Web services fit
together in a way such that the composed system is deadlock-free? –
the question of compatibility. Can one Web service be replaced by an-
other while the remaining components stay untouched? – the question of
equivalence. Can we reason about the soundness of one given Web service
without considering the actual environment it will by used in?
This paper defines the notion of usability – an intuitive and locally prov-
able soundness criterion for a given Web services. Based on this notion,
this paper demonstrates how the other questions could be answered.
The presented method is based on Petri nets, because this formalism is
widely used for modeling and analyzing business processes. Due to the
existing Petri net semantics for BPEL4WS – a language that is in the
very act of becoming the industrial standard for Web service based busi-
ness processes – the results are directly applicable to real world examples.

Keywords: Business Process Modeling, Web Service, BPEL4WS, Tool
based Verification, Petri nets.

1 Introduction

Over the past years, the Internet has evolved from just a communication media
into a platform for B2B integration. Emerging technologies and industrial stan-
dards in the field of Web services enable a much faster and easier cooperation
of distributed partners. This paper is concerned with the application of Web
services to distributed, cross-organizational business processes.

The Scenario. A Web service [1] is a self-describing, self-contained modular
application that can be published, located, and invoked over a network, e. g. the
Internet. A Web service performs an encapsulated function and can be accessed
via a standardized interface. In this paper, each local sub-process of each par-
ticipating company is realized through one Web service. The composition of all
Web services of all participating companies realizes the global business process.
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Instead of one new specific technology, the Web service approach provides a
stack of closely related technologies [4] to cover heterogeneity and distribution
underneath a homogenous concept of components and composition. Among other
things, the language BPEL4WS [2] belongs to this stack. Due to this layered
architecture, the presented analysis method can be focussed on the Web service’s
BPEL process model without losing generality or practical relevance.

The Goal. The Web service technologies define a technical framework to im-
plement distributed business processes while a minimum of syntactic consistency
is guaranteed. But as this paper will show, there is a need for more advanced
analysis, and there exist effective methods that are able to support the develop-
ment of Web services and Web service based business processes according to the
Service oriented architecture (SOA [9]).

The service oriented architecture describes three roles: The service provider
implements the Web service and publishes its description (the Web service
model) to one or more repositories for potential users to locate. For him, it
is crucial to determine errors and weaknesses of his service prior to publication.
Hence, this paper presents the notion usability – a locally provable soundness
criterion for a given Web service – that prevents publication of erroneous services.

The service requestor is searching for a Web service that he could bind to his
own components. For him, it is crucial to determine whether or not a given Web
service does interact properly with his components. Hence, this paper defines
the criterion of semantic compatibility and provides its verification.

Finally, the service broker manages a repository and allows the service re-
questor to find an adequate service. According to the query-by-example approach,
he compares the actual Web service model (published by provider) with an ab-
stract Web service model submitted by the requestor. Beside other use cases, the
presented equivalence criterion provides a basis for the necessary matchmaking.

The Method. Many of the Web services technologies are still in the standard-
ization process, and therefore some specifications will likely be changed several
times until a consistent status is reached. Hence, the presented method refrains
from the actual syntax of any proposed Web service modeling languages. Instead,
it applies a generic formalism of Petri nets [16] to addresses the core problems
of distributed business processes. This formal method is widely used for mod-
eling and analyzing business processes and Web services [21, 5, 6]. Applying the
rich theory of distributed systems, the presented method is able to define and
verify usability, compatibility and equivalence of Web services. Moreover, the pre-
sented results can easily be adopted to almost any concrete modeling language
(e. g. WS-CDL [7], OWL-S [25] or YAWL [23]). In particular, there exists already
a Petri net semantics for BPEL4WS [18] – a language that is in the very act
of becoming the industrial standard for modeling Web service based business
processes. Hence, the method is directly applicable to real world examples.

The remaining paper is structured as follows: Section 2 gives a short intro-
duction to Petri nets and describes the structure and composition of workflow
modules – the formal model of a Web Sevice. Section 3, discusses and defines the
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notion of usability by help of examples, and derives the properties of compatibil-
ity and equivalence. Section 4 establishes the core section of this paper: Applied
to an example, the verification algorithm is presented. Finally, Section 5 summa-
rizes the results and discusses their correlation to other published approaches.

2 Modeling

The Business Process Execution Language for Web Services BPEL4WS [2] pro-
vides a syntax to describe Web service process models. But, its semantics so
far is defined only by English prose or encoded into middleware components,
more ore less accurately. To verify properties like properties compatibility or
equivalence of two models a formal semantics of all its concepts is needed. The
presented method is based on a Petri net semantics [18]. Petri nets are a well
established method for modeling and analyzing (cross-organizational) business
processes [20, 21, 8]. They possess an intuitive graphical representation as well
as an algebraic foundation, and therefore Petri nets allow an effective analysis.
Other recent research projects apply Petri nets to Web Services [6, 15], too.

In contrast to the mentioned Petri net semantics, the current approach ab-
stracts from data aspects. This is an usual procedure in the field of computer
aided verification. On the one hand, a model without data has the disadvan-
tage of less precision (i. e. a more general behavior), but on the other hand, this
enables analysis methods yielding important results that are not applicable to
models with full expressive power of arbitrary data objects. The mapping of a
BPEL process model into an analyzable Petri net is explained in [13].

2.1 Modeling with Petri Nets

Figure 1 shows Petri net models of three Web service: A route planning service,
a services that acts as mediator and a customer’s service. These examples will
be used to demonstrate the modeling method, and to visualize composition and
compatibility of Web services. But first, some basic Petri net notions have to be
introduced:

Petri Nets. A Petri net N = (P,T,F) consists of a set of transitions T (boxes),
a set of places P (ellipses), and a flow relation F (arcs) [16]. A transition repre-
sents a dynamic element, i. e. an activity of a business process (e. g. Get Itinerary).
A place represents a static element, i. e. the causality between activities or a
message channel (e. g. Itinerary). The marking (i. e. state) of a Petri net is repre-
sented by black tokens distributed over the places (see places p0, q0 and s0). A
transition t is enabled if on each place p, (p, t) ∈ F there is at least one token. If
an enabled transition t fires, t removes one token from each place p1, (p1, t) ∈ F
and produces one token on each place p2, (t, p2) ∈ F. Based on this firing rule, it
is possible to reason about the behavior of a Petri net in term of firing sequences,
reachable states and/or concurrent runs (cf. [17]).
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Fig. 1. Modeling with Petri nets

Workflow Modules. A stateful Web service defines an internal process (i. e.
activities building its internal structure), and an interface to communicate with
other Web services. Hence, the Petri net model of such a Web service consists of
a workflow net – a special Petri net that has two distinguished places (α,ω ∈ P)
to denote the begin and the end of a process [21] – supplemented by a set of
interface places – each of them representing one directed message channel. Such
a model is called workflow module.

Definition 1 (Module). A finite Petri net M = (P,T,F) is called workflow
module (or just module) if the following conditions hold:

(i) The set of places is divided into three disjoint sets: internal places PN ,
input places P I and output places PO.

(ii) The flow relation is divided into internal flow FN ⊆ (PN × T) ∪ (T × PN )
and communication flow FC ⊆ (P I × T) ∪ (T × PO).

(iii) The net PM = (PN ,T,FN ) is a workflow net.
(iv) No transitions is connected both to an input place and an output place.

Within a workflow module M , the workflow net PM is called the internal pro-
cess of M and the tuple I(M) = (P I ,PO) is called its interface. Lets have a
closer look on the module Route Planning shown in Figure 1. The internal pro-
cess is triggered by an incoming Itinerary. Then the control flow splits into two
concurrent threads. On the left side, an available Means of travel are offered to
the customer and the service awaits his Selection. Meanwhile, on the right side, a
Rough Planning may happen. The Detailed Planning requires information from the
customer. Finally, the service sends a Route Planning to the customer.



Analyzing Web Service Based Business Processes 23

2.2 Composing Workflow Modules

A distributed business process is realized by the composition of a set of Web ser-
vices. The following section defines the pairwise composition of workflow mod-
ules. Because this yields another workflow module, composition of more than
two modules is realized by recurrent application of pairwise composition.

Compatibility. Figure 1 shows the module Default in the middle. The purpose
of this service is to unburden the customer from making a selection: The module
consumes the message on available Means of travel and returns a default Selec-
tion. Intuitively, it looks like the modules Default and Route Planning could be
composed. Formally, we will define the property of syntactic compatibility as a
precondition for composition of two modules.

Definition 2 (Syntactic compatibility). Two workflow modules are called
syntactically compatible if both internal processes are disjoint, and each common
place is an output place of one module and an input place of the other.

Referring to previous definition, the modules Default and Route Planning are syn-
tactically compatible. Nevertheless, this is not a sufficient criterion for proper
interaction between two partners. Lets consider a workflow module of an online
shop and a workflow module of a customer: The customer sends the payment
after he has received the ordered product, whereas the online shop waits for pay-
ment before sending the product. Both modules have a syntactically compatible
interface, but the resulting distributed process leads to a deadlock. To avoid such
errors, Section 3.2 will define the property of semantic compatibility.

Composition. As the example has shown, two syntactically compatible mod-
ules do not need to have a completely matching interface. They might even have
a completely disjoint interface. When two modules are composed, the common
places are merged and the dangling input and output places become the new
interface. To achieve a syntactically correct workflow module, it is necessary to
add new components for initialization and termination.

Definition 3 (Composed system). Let A = (Pa,Ta,Fa) and B = (Pb,Tb,Fb)
be two syntactically compatible modules. Let αs,ωs /∈ (Pa ∪ Pb) two new places
and tα , tω /∈ (Ta ∪Tb) two new transitions. The composed system Π = A⊕B is
given by (Ps,Ts,Fs), such that: Ps = Pa ∪Pb ∪ {αs,ωs}, Ts = Ta ∪ Tb ∪ {tα , tω}
and Fs = Fa ∪ Fb ∪ {(αs, tα), (tα ,αa), (tα ,αb), (ωa, tω), (ωb, tω), (tω ,ωs)}.

If the composed system contains more than one components for initialization
and termination, the corresponding elements are merged.

It can be easily proven that the composition of two syntactically compatible
workflow modules always yield a workflow module, too. This is because of the
additional components for initialization and termination. If more than two mod-
ules are composed, it is important to guarantee associativity of pairwise com-
position (i. e. (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)). Hence, if there are already such
syntactic components, they are merged while composition (cf. Figure 2(b)). In
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Fig. 2. Composition of workflow modules

Figure 2(a), the workflow module Default Planning is shown – the model of the
composed Web service Route Planning ⊕ Default. This service offers a simpler in-
terface to the customer: He only has to submit the Itinerary to obtain the Route
Planning information. To use this service, it is not relevant for a customer wether
or not the actual service was deployed at once or was formed by composition.

Environment. The composition of two workflow modules A and B yields a
model of a distributed business process, if both sets of interface places completely
match, i. e. the composed system Π = A⊕B has an empty interface. With other
words, Π is also a workflow net. In that case, module A is called an environment
of module B – obviously, this notion is symmetric.

The module Customer shown in Figure 1 is an environment of the (composed)
module Default Planning and vice versa. Figure 2(b) shows the resulting workflow
net. While composing both modules, the existing and the new added components
for initialization and termination are merged, as already mentioned.

Given a workflow module and its environment, it is possible to reason about
the soundness of the composed process model. This notion is an established
quality criterion for workflow nets [21]. Basically, it requires each initiated process
to reach eventually a proper final state. Additionally, each transition should be
relevant, i. e. there should be at least one firing sequence of the process in which
this transition participates. Although the second requirement was reasonable if
a business process was modeled from scratch, in the Web service approach, a
process arises from composition of several predefined components. Due to this, a
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workflow net is acceptable even if not all functionality of each specific component
is used in that system. Hence, a slightly alleviated criterion is used in this paper.

Definition 4 (Weak soundness). A workflow net (P,T,F) with the final place
ω ∈ P is called weak sound if the following conditions hold:

(i) For each reachable marking m holds: the final marking [ω] is reachable.
(ii) For each reachable marking m with m ≥ [ω] holds: m = [ω].

The weak soundness of the module Planning Process shown in Figure 2(b) can
be easily proven. Because of that, intuitively, the modules Default Planning and
Customer seem to be semantically compatible. In Section 3.1, the core notion of
usability will be discuss and precisely defined. Based on this notion, definition
of semantic compatibility can be derived that meets this intuition.

3 Properties

This section discusses the property of usability – the proposed soundness cri-
terion for workflow modules – and derives the definitions of compatibility and
equivalence. Obviously, the purpose of a Web service is to be bound to other com-
ponents such that a proper realization of a distributed business process arises.
Hence, the purpose of a workflow module is to be composed with an environ-
ment such that the resulting workflow net is at least weak sound. But, for a given
module there might exist infinitely many possible environments. The question is:
How many of these environments have to match to call the given module usable?

3.1 Usability

An example of a ticket service and a customer is used to address the question
above. Figure 3(a) shows a workflow module C1 representing the customer and
a module T1, which models the ticket service. The ticket service initiates the
communication by sending a Ticket and waits for payment (either VISA or eCash).
By receiving the Ticket, the customer solves an internal conflict and determines
the kind of payment. The composed system C1 ⊕ T1 is weak sound, and therefore
it seems reasonable to call these two modules semantically compatible. Is this
enough to call both modules usable, as well?

Figure 3(b) shows two slightly modified workflow modules C2 and T2. The
ticket service solves an internal conflict and sends the Ticket. Thereafter, module
T2 is either in state p1 waiting for eCash only, or in state p2 waiting for VISA only.
The customer receives the Ticket and has the choice between the two kinds of
payment. But, he does not know the internal state of the ticket service module.
Hence, he might choose the“wrong”payment, and the composed system C2 ⊕ T2
ends up in a deadlock, i. e. it is not weak sound.

Obviously, these two modules are not semantically compatible. To locate the
modeling error, lets consider the other two possible combinations: The system
C2 ⊕ T1 is also weak sound, whereas the system C1 ⊕ T2 may reach a deadlock,
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Fig. 3. Usability of workflow modules

too. Hence, there are two compatible environments for module T1 and no com-
patible environment for module T2. By help of the developed analysis method
(cf. Section 4), it can be proven that there can’t be any environment that forms
a weak sound composed system together with module T2. This is because of a
severe error in module T2: An internal decision is made and not communicated
properly to the environment. This type of errors is known in the literature as
the non local choice problem [3]. Consequently, the module T2 is not usable.

For both modules C1 and C2, there is one compatible environment (T1) and
one incompatible environment (T2). One might think of calling a module usable
if all possible environments form a weak sound composed system together with
that module. In that case, both modules C1 and C2 would be not usable – because
of the environment T2. However, this definition is unfair: the error within the
module T2 should not determine the quality of module C1. Moreover, for each
given module it is possible to construct a malicious environment (cf. [12]). Hence,
this paper proposes a more appropriate definition of usability:

Definition 5 (Usability). Let M be a workflow module. An environment U
utilizes module M if the composed system Π = M ⊕ U is weak sound. Module
M is called usable if there exists at least one environment U that utilizes M .

Thus, the modules C1, C2 and T1 are called usable. Section 4 presents the algo-
rithm to decide usability of a workflow module by creating an utilizing environ-
ment (if possible). A further discussion on usability can be found in [11].

3.2 Compatibility

In the previous section, the notion of semantic compatibility has already be men-
tioned. Now, a definition of this notion shall be derived. There are two cases: If a
workflow module and its environment are given, obviously, they are semantically
compatible if the composed system is weak sound. But, if there are two arbitrary
modules (e. g. modules Default and Route Planning shown in Figure 1), a different
definition is required. Obviously, two modules are not compatible in case the
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composed system has an error, i. e. the resulting module is not usable. Hence,
this paper proposes the following definition.

Definition 6 (Semantic compatibility). Two syntactically compatible work-
flow modules A and B are called semantically compatible if the composed system
A ⊕ B is usable.

Thus, the modules Default and Route Planning are semantically compatible. More-
over, this definition also cover the composition of a module and its environment:
Because the composition of those two modules yields workflow module with an
empty interface (cf. Figure 2(b)), it is easy to find an utilizing environment –
with an empty interface, too. Consequently, each weak sound composed sys-
tem is usable. Hence, the modules Default Planning and Customer are semantically
compatible. More details on compatibility can be found in [10].

3.3 Equivalence

There are many use cases, where it is crucial to decide whether two Web services
behave similar, i. e. their models are equivalent. Beside the already mentioned
problem of discovery (cf. Section 1), the problem arises if a Web service – being
already part of a global business process – needs to be replaced, e. g. because of
efficiency. Of course, all other participating components should stay untouched.

Intuitively, two Web services are equivalent if in a comparable situation one
Web service behaves like the other and vice versa. Concerned with various formal
methods, there are countless approaches published dealing with the comparison
of behavior in terms of simulation or equivalence. This variety results from dif-
ferent interpretations of the terms“comparable situation”and“behave like” ([24]
gives a substantial overview on equivalence notions). But, none of them seems to
fit exactly to this field of application: The purpose of a Web service is to be used
by an environment. Hence, an adequate notion of simulation or equivalence, first
of all, should be derived semantically from the field of application.

Definition 7 (Simulation/Equivalence). A workflow module A simulates a
workflow module B if each utilizing environment of module B is an utilizing
environment of module A, too. Two workflow modules A and and B are called
equivalent, if module A simulates module B and module B simulates module A.

This definition exactly meets the requirement of the cross-organizational business
process scenario: Lets consider a workflow module M and an utilizing environ-
ment E. For each module M ′ simulating M and for each module E′ simulating E
holds: E′ is an utilizing environment of M ′ and vice versa. This property follows
directly from Definition 7.

In this approach, the verification of equivalence is based on a formal simu-
lation relation between the communication graphs of both workflow modules –
the explicit representation of the module’s externally visible behavior, explain in
the following section. Because of limited space a detailed discussion is omitted
here, but some results are presented: The workflow modules C1 and C2 (shown
in Figure 3) can be proven equivalent, whereas e. g. classical bisimulation does
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not yield this result. In contrast, the workflow modules T1 and T2 are proven to
be not equivalent, whereas referred to trace equivalence those modules can’t be
distinguished. These examples, the comparison of selected notions of equivalence
and the precise definition of the verification algorithm can be found in [13].

4 Analysis

The usability of a workflow module is defined through the existence of an uti-
lizing environment. Hence, the definition does not describe how to disprove the
usability of a given Web service. This section provides a different approach: First,
an adequate representation of the Web service’s external behavior is derived –
called the communication graph. Second, the usable behavior of the Web service
is determined – called the u-graph. Finally, the usability of a given workflow
module and the algorithmic constructing its usability graph are related within
the core theorem, such that usability can be decided effectively.

4.1 Reflecting the Behavior

A workflow module is a reactive system, it consumes messages from the environ-
ment and produces answers depending on its internal state. Problems may arise
because an environment has no explicit information on the internal state of the
module. But each environment can derive some information by considering the
communication towards the module. Hence, an environment has some implicit
information. We reflect exactly that kind of information within a data structure
– called the communication graph (abbr. c-graph).

Definition 8 (Communication graph/c-graph). A communication graph
((V,H,E),m) is a directed, strongly connected, labeled, bipartite graph such that:

– The graph has two kinds of nodes: visible nodes V and hidden nodes H.
– Each edge e ∈ E connects two nodes of different kinds.
– The graph has a definite root node v0 ∈ V, each leaf is a visible node, too.
– The labeling m maps each visible node to a set of states of the corresponding

Petri net, and each edge to a bag of messages.

Figure 4 presents the c-graphs of those workflow modules shown in Figure 3;
Section 4.2 will explain why one graph is drawn with dashed lines. Lets have a
closer look on the graph C(C1). The root node v0 is labeled with the initial state
of the module [q0]1.

Each edge, starting at a visible node, is labeled with a bag of messages sent
by the environment – called input. In the initial state, the module C1 is able to
consume only the message Ticket. Each edge, starting at a hidden node, is labeled

1 The actual labeling of the node v0 is { [q0] } – the singleton containing the state [q0].
For reasons of simplicity, we omit these extra braces as well as the brackets around
the bags of messages.
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with a bag of messages sent by the module – called output. In the example, the
customer replies to the Ticket by paying either with VISA or with eCash. An edge
may be labeled with an empty bag as well, denoted by [ ]. Each path from the
root to a leaf represents a complete communication sequence between the module
an an environment. In general, a visible node may be labeled with more than one
state (e. g. v1 in C(T2)), and an edge may be labeled with more than on message
(not present in the chosen examples). The c-graph of a given workflow module
is well defined, and it can be calculated based on the following notions:

Activated input: Referring to a given state, an activated input is a bag of input
messages that are consumed by the module along a firing sequence, whereas
no output message was produced and the firing sequence ends either in the
module’s final state or in a state that enables a transition that can produce an
output message. The function inp yields the set of activated inputs.

Successor state: Referring to a given state, a successor state is a maximal reach-
able state w. r. t. one possible behavior (i. e. one concurred run [17]) of the mod-
ule. The function nxt yields the set of successor states.

Possible output: Referring to a given state, a possible output is the bag of output
message that was produced while reaching one successor state. The function out
yields the set of possible outputs.

Communication step: A four-tuple (z, i, o, z′) is called communication step if
z, z′ are states of a module, i is an input and o is an output, and (z′ + o) is a
successor state of (z + i). S(M) denotes the set of all communication steps.

The c-graph of a workflow module may contain cycles. That doesn’t affect
the presented analysis method as long as the graph is finite. But, workflow
modules with an infinite c-graph always contain an severe modeling error. The
precise, mathematical definition of all notions mentioned above, a discussion on
the complexity of the algorithm and possible optimizations, and the problem of
infinite graphs is discussed in [12]. Applying these notions, we are now able to
present the construction of the c-graph. The algorithm starts with the root node
v0 labeled with the initial state:
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1. For each state within the label of vk calculate the set of activated inputs:⋃
z∈m(vk) inp(z).

2. For each activated input i within this set:
(a) Add a hidden node h, add a new edge (vk,h) with the label i.
(b) For each state within the label of vk calculate the set of possible outputs:⋃

z∈m(vk) out(z + i).
(c) For each possible output o within this set:

i. Add a visible node vk+1, add a new edge (h, vk+1) with the label o.
ii. For each state z ∈ m(vk) and for each communication step

(z, i, o, z′) ∈ S(M) add z′ to the label of vk+1.
iii. If there exists a visible node v such that m(vk+1) = m(v) then merge

v and vk+1. Otherwise, goto step 1 with node vk+1.

The c-graph of a workflow module contains the maximal information an environ-
ment can derive. The environment always sends only those messages the module
is able to consume (in at least one of the possible reached states), but enough to
achieve an answer or to terminate the process in a proper state. By considering
all reachable successor states (and all possible outputs), the choices within the
module are not restricted.

4.2 Analyzing the Behavior

In general, the c-graph may have several leaf nodes. But in each c-graph, there is
at most one leaf node that is labeled with the defined final state of the workflow
module. All other leaf nodes contain at least one state, where there are messages
left or which is a deadlock state of the module (e. g. v4 in C(T2)). Consequently,
if an environment was communicating with the module according to the labels
along the path towards such a leaf node, this environment would not be an
utilizing environment. The elimination of all such erroneous sequences yields
a (possibly empty) subgraph that can be regarded as directions for using the
module – called the usability graph (abbr. u-graph). of that module.

Definition 9 (Usability graph/u-graph). A finite, non-empty subgraph U of
the c-graph C is called usability graph if the following conditions hold:

– U contains the root node of C and only that leaf node of C, which is labeled
with the defined final state of the workflow module.

– For each hidden node of C that is in U, all outgoing edges are in U, as well.
– Each node within U lies on a path between the root and the defined leaf node.

An u-graph arises by removing only those edges (and succeeding nodes) that
start at a visible node. Hence, it restricts the behavior of an utilizing environment
(some inputs are removed), but it does not restrict the behavior of the module
(all output are still available). In that sense, an u-graph of a workflow module
describes a instruction manual for a possible environment.

In Figure 4, those parts of the c-graphs that does not belong to any u-graph
are drawn with dashed lines. The graph C(T2) does not contain any u-graphs.
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Hence, this module is not usable. Referring to modules C1 and C2, the whole
c-graph is their only u-graph. But in general, a c-graph may contain several u-
graphs. The whole graph C(T1) is an u-graph, and removing the hidden node
h2 (or h3, resp.) yields another u-graph, i. e. this ticket module can be used as
well by a customer who exclusively pays with eCash (or VISA, resp.). To find
the maximal u-graph, the algorithm walks backwards through the c-graph, and
removes nodes according to Definition 9.

4.3 Theorem of usability

An u-graph U of a module M can easily be transformed into an environment
of the M : Each node of the graph becomes a place, each edge starting at a
visible node becomes a sending transition, and each remaining edge becomes
a receiving transition of the environment. The resulting module is called the
constructed environment, denoted by Γ(U). Based on the restrictions of U , it is
easy to prove that the composed workflow module M ⊕ Γ(U) does not contain
any deadlock. If M ⊕Γ(U) also does not contain any livelock (i. e. the composed
module always can terminate), the constructed environment Γ(U) is an utilizing
environment of M . The following theorem formulates the correlation between
the usability of a workflow module and the existence of an u-graph:

Theorem 1 (Usability). Let M be a workflow module and let C be the c-graph
of M. The module M is usable, if and only if C contains at least one u-graph U
and the composed system M ⊕ Γ(U) always can terminate.

The entire proof can be found in [12]. The following paragraph sketches its
idea. Implication: As already mentioned, it can be proven easily that M ⊕Γ(U)
does not contain any deadlock. Hence, if the composed system terminates, it
must have reached the desired final state, otherwise it would have reached a
deadlock. Thus, Γ(U) is an utilizing environment of M . In case M is an acyclic
module, termination is granted, and the theorem only requires the existence of
an u-graph. Revers implication: If the module M is usable, there is at least one
utilizing environment E. Based on this property it is possible to project the all
reachable states of the composed system M ⊕ E to the c-graph of M (without
sticking to one specific environment). This yields a subgraph C ′ ⊆ C, which can
be proven to meet the requirements of Definition 9. Hence, Γ(C ′) is an utilizing
environment of M .

The theorem on usability makes it possible to decide usability in many cases:
An acyclic workflow module has a finite c-graph. Thus, we can search for an
u-graph and decide usability. The most cyclic modules have a finite c-graph,
too. Even if an usable cyclic module has an infinite c-graph, there exists a finite
u-graph. Applying breadth-first-search, this graph will be found after finite time.

5 Summary

In this paper, a framework for modeling and analyzing Web service based busi-
ness processes by help of Petri nets was presented [12]. Each Web service has
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an interface and an internal process structure. Hence, a Web service is modeled
in terms of a workflow module – a workflow net with a set of interface places.
Based on this formalism, the notion of usability was defined – an intuitive and
locally provable soundness criterion for workflow modules. On top of usability,
the questions compatibility and equivalence could be precisely addressed, and
there are effective algorithms to verify all these properties. Due to the available
Petri net semantic of BPEL4WS [18], the method is directly applicable to real
world examples.

Of course, the current work was inspired by many other approaches, dealing
with the problems of cross-organizational workflow and Web services. Some ap-
proaches also use Petri nets [20, 6] and/or specify the global interaction by help
of Message Sequence Charts (MSC) [22, 8]. But, none of them presents such a
focussed view on a components externally visible behavior as the communica-
tion graph does. Due to this representation, the comparison of behavior is more
adequate w. r. t. the field of application than traces [24] or automaton [26].

All presented algorithms are implemented within the prototype Wombat4ws
[27]. Currently, the work is focussed on improving the algorithms’ efficiency
by the application of partial order reduction techniques [19]. Moreover, up to a
certain degree the integration of data aspects into the formalism is planned. Es-
pecially the dependencies between the content of incoming message and internal
decisions made by the process are the focussed target. Applying technologies of
static program analysis (e. g. slicing [14]), it seems possible, to achieve a higher
level of precision in mapping a given process model into a Petri net, without
loosing the possibility of efficient analysis.
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Abstract. Web Services are the basic building blocks of next generation
Internet applications, based on dynamic service discovery and composi-
tion. Dedicated discovery services will store both syntactic and behav-
ioral descriptions of available services and guarantee their compatibility
with the requirements expressed by clients. In practice, however, inter-
actions may still fail because the Web Service’s implementation may be
faulty. In fact, the client has no guarantee on the quality of the imple-
mentation associated to any service description.

In this paper, we propose the idea of high-quality service discovery
incorporating automatic testing for validating Web Services before al-
lowing their registration. First, the discovery service automatically gen-
erates conformance test cases from the provided service description, then
runs the test cases on the target Web Service, and only if the test is suc-
cessfully passed, the service is registered.

In this way, clients bind with Web Services providing a compatible
signature, a suitable behavior, and a high-quality implementation.

1 Introduction

Internet and the WWW provide a huge amount of services accessible from every
connected machine. Most of these services are designed for human users, and
only a strict subset can be easily discovered by search engines. This scenario is
in contradiction to that of a machine-readable Web that exploits dynamic and
automatic composition of services [1].

Web Services and the Service Oriented Architecture (SOA) represent a step
toward the Internet as computational infrastructure [2, 3]. Web Services are soft-
ware applications identified by URIs, whose interfaces and bindings are defined
and discovered through XML documents. A Web Service supports direct inter-
actions with other software agents using XML-based messages exchanged via
Internet-based protocols [2]. The SOA provides the basic infrastructure for the
discovery and dynamic binding of Web Services by defining the roles of provider,
requestor and discovery service. A provider offering a service publishes its de-
scription at the discovery service. The requestor queries the discovery service in
order to find a suitable service it can interact with to perform a certain task.
The discovery service provides functions for storing, classifying, and browsing
registered services [3].
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With this basic scenario, several problems remain open. First of all, service
description and discovery is largely syntactic, reduced to the signatures of oper-
ations and simple classifications. Thus, there is no guarantee that the returned
service operates in the way expected by the client. This problem can be over-
come by augmenting the syntactic description by a behavioral specification of
the service. Rather than logic or algebraic techniques we prefer graph transfor-
mation rules for this purpose because they blend well with UML, the standard
software modeling language, thus keeping the additional effort manageable [5].

Graph transformation rules have been proposed for modeling both the be-
havior of the provided service and the client’s requirements [4]. The provider
uploads (an XML representation of) these models together with the syntactic
service description, while the requestor uses a requirements model to specify
its query. Then, service discovery includes the matching of these models at the
discovery service: If the provided model satisfies the requirements, binding is
allowed; otherwise another Web Service must be selected.

This new scenario increases the reliability of the binding between the re-
questor and the provider. However, another problem still exists. Can the client
trust the implementation of the service description? The provider may register a
suitable model, but provide a faulty implementation; for instance because of in-
sufficient testing. Moreover, service providers could maliciously provide “models
better than services”. Since a faulty interaction can affect a distributed compu-
tation, clients dynamically binding to faulty Web Services can encounter serious
problems, e.g., a complex business transaction may lead to expensive recovery
procedures. Therefore, requestors exploiting dynamic and automatic discovery
and binding require high-quality Web Services. To reach this goal we foresee the
introduction of High-Quality Service Discovery agencies, i.e., discovery services
with added functionality for behavioral matching and automatic testing.

High-quality service discovery automatically tests a Web Service with respect
to a provided model consisting of GT rules that specify the individual operations
of the service. The registration of services is allowed only if testing is passed,
otherwise a report is generated and sent to the service provider. The developer
of the Web Service can use the report to refine either the rules of the models or
the implementation, depending on the origin of the problem.

Clients that use a high-quality service discovery agency have the guarantee
that any discovered Web Service has passed the testing phase, therefore it can
rely on both the interface compatibility and the implementation of the service.

2 Registration Scenario

We focus on the scenario taking place during the registration of a new service.
The discovery and binding phases have been discussed in [4].

Let us assume the existence of a provider P and a discovery service U . P
provides a Web Service ws that is described by means of both a syntactic inter-
face description (e.g., a WSDL descriptor) and GT rules specifying the offered
behavior. The registration phase includes the following steps (see Figure 1):
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Fig. 1. The registration process for a new Web Service

1. The provider P uploads both the WSDL document and the GT rules to the
discovery service U . See Section 3 for details on the specification of Web
Services by GT rules.

2. The discovery service U automatically generates a set of test specifications
from the GT rules. Tests cover validation of both single operations and
sequences. See Section 4 for details.

3. Concrete test cases are generated and remotely executed using a testing
interface T provided by the Web Service ws. This resembles the normal
interface, but includes additional functions facilitating the execution of the
test cases. See Section 5 for details.

4. Results of test cases are judged based on the returned results and the con-
ceptual state of the service after completing the operation. The latter is read
through the testing interface which provides access to an abstraction of the
internal data state. See Section 5 for details.

5. If all test cases have been passed, the discovery service U registers the new
Web Service with both the WSDL document and the GT rules for matching
against the requirements of requestors. Finally, the service provider replaces
the testing interface by the ordinary one. If test cases have failed, the dis-
covery service U generates a report that is sent to the provider P .

3 Specification of Web Services by GT Rules

A Web Service provides a coherent set of operations based on a common data
model, i.e., an XML schema. Together with the operation’s signatures this makes
up the WSDL description of the service. Extending this syntactic description,
the behavioral specification of operations by means of GT rules is based on the
data model of the service interface as well as a conceptual model of the internal
state of the service. At the model level, the state is represented by an attributed
graph, visualized as an UML object diagram [6].

A GT rule refines the signature of the service, specifying how parameters
and internal data are used and modified. Each service is associated to a set
of production rules representing the different computations that can take place
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Fig. 2. Relation between conceptual and implementation state transformation

when the service is executed with different input values at different states. A
production rule has a precondition and an effect. If the precondition is satisfied,
the rule can be applied. The effect consists of objects and links that are deleted
and added, and attribute values that are modified. A graph can satisfy the
preconditions of multiple rules, in such case the choice is non-deterministic.

In this paper, we visualize graph transformations by the notation proposed
in [7], see Figure 3 for an example. The semantics of the adopted graphical
notation is the following one: nodes and edges fully contained inside the triangle
are part of the pre-condition: they must be present and are not deleted by the
application; edges and nodes partially or fully present at the left-hand side of
the triangle are part of the pre-condition, too, but they are deleted when the
rule is applied; nodes and edges partially or fully present on the right-hand side
of the triangle are created by the rule; and finally, edges and nodes partially or
fully present below the triangle form a negative application condition: they must
not be present in the given graph. Parameters are distinguished from objects in
the state of the server by a gray background. Finally, at the bottom of the
graphical notation, guard conditions and assignment are provided. The guard is
a Boolean expression over attributes: a production rule can take place only if the
guard is evaluated to true. The assignment is responsible for updating values of
attributes.

Graph transformations specify the behavior of a Web Service at the concep-
tual level. Therefore, the state of the service whose evolution is described does
not coincide with the concrete data state, whose representation may involve Java
objects and attributes or database tables, depending on the used implementa-
tion technology. Testing is performed on the implementation of the Web Service,
hence it refers to the concrete data state. However, test cases are generated from
the specification, thus they refer to the conceptual state. Figure 2 captures this
situation where G′ is the concrete state of the service, and G represents the
abstract state that corresponds to G′ [8]. G can be obtained from G′ by an
abstraction function abs that extracts a high-level representation of the actual
state. A production rule p can be applied to the abstract state to obtain a new
abstract state H. In the same way, the corresponding service s can be executed
on the concrete state G′ to obtain a new concrete state H ′.

Testing is used to demonstrate the conformance of the specification with the
implementation. We define conformance in terms of the following conditions.
Completeness: For each concrete state G′ of service s, if abs(G′) = G satis-
fies the precondition of an associated rule p, then there exists a transformation
G′ s=⇒ H ′ on the concrete state such that G

p
=⇒ H = abs(H ′).
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Soundness: A service s does not perform unspecified operations, with the ex-
ception of errors leaving the state unchanged, i.e., G′ s=⇒ H ′ implies G′ = H ′

or there exists an associated rule p with abs(G′) = G
p

=⇒ H = abs(H ′).

We initiallyvalidatecompletenessandsoundnessbyderivingtest cases for single
rules. Completeness is validated by generating test cases inside the input domain of
the rules, while soundness is checked through test cases outside the rules’ domain.

Unfortunately, testing single rules is not enough to ascertain the conformance
of the specification with the implementation. The execution of sequences of op-
erations can reveal additional implementation faults related to details that are
not present in the conceptual state. We account for such cases by defining dif-
ferent types of dependencies among rules and deriving test cases where these
dependencies are exercised.

Throughout the paper we consider the example of a Web Service providing
simplified banking functions. Figure 3 shows production rules corresponding to
the creation of a new account, the withdrawal of money, the charging of an
account with a set of payments, the deposit of money, and the closing of the
account.

Fig. 3. Production rules for a Web Service managing bank accounts
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4 Test Case Generation

We generate test cases for testing conformance of the implementation with in-
dividual rules by selecting “promising” inputs. Moreover, we generate test se-
quences stressing the interaction among rules.

Generation of Test Cases for Single Services. A WSDL description defines the
input parameters and domains for the operations of a service. Possible inputs
are further constrained by the preconditions of the GT rules. This suggests
the derivation of test cases using a domain-based strategy, known as partition
testing [9], which is an established technique successfully used in several con-
texts [10, 11]. The idea is to select test cases by dividing the input domain into
(possibly overlapping) subsets and choosing one or more elements from each
domain [10].

Partition testing has been used neither in the context of Web Services nor
with respect to GT rules. Hence, our approach reuses standard ideas of testing
in a new context. This requires a notion of input domain which combines the
concrete input parameters of operations with the conceptual state of the Web
Service before it is applied.

Formally, the input domain of a service s is the set of all parameter-state
pairs ID(s) = {〈par, st〉 | par satisfies the WSDL description}. The presence of
both input and state in the domain is required because services are triggered
by a combination of the two. Samples from ID(s) can thus invoke all possible
behaviors.

We identified the following fault-based guidelines [10] as strategy for designing
the domains from each of which at least one test case should be chosen. The
idea is that “small” partitions where several insidious faults can be present, and
“larger” partitions where no assumptions about specific implementation threats
can be performed are identified. Inside a partition all inputs have the same bias
to be faulty. The discovery service administrator can exactly set the number of
test cases that are sampled for each domain in a way to find the right balance
between coverage and time consumed on testing. Experimental work aiming at
finding the best number of test cases that should be selected from each domain
is part of future work.

– The input domain of a rule p, given by the set of all parameter-state pairs
〈par, st〉 satisfying the pre-condition of the rule, defines a domain D(p).

– Parameter-state pairs 〈par, st〉 simultaneously enabling two different rules
p1, p2 form an input domain D(p1, p2) = D(p1)∩D(p2) because they require
an internal decision (possibly non-deterministic) to decide which behavior
must take place. This decision may be complex and its implementation in-
correct.

– Input parameters and objects in the conceptual states carry attributes that
are constrained by types and attribute conditions. Faults are likely when
dealing with values at the boundary of their domains [9]. Thus, we define
separate domains for inputs where at least one attribute has a boundary
value. Note that the same attribute can have multiple boundary values.
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– A production rule can also contain multi-objects which, upon application,
are expanded to a set of objects whose cardinality depends on the current
input. In order to validate this mechanism, we consider the inputs leading
to expansions with zero, one, and multiple elements.

– Inputs outside the specification should create a response to notifies the client,
but without modifying the state of the server. Failures to check for incorrect
inputs can lead to follow-up faults which are very difficult to detect. We
therefore consider a domain for values that do not belong to the input of
any rule, but are correctly typed with regard to the WSDL description of s,
i.e., ID(s) \ ⋃

pi∈s
D(pi).

Note that these domains are not disjoint, but can overlap. It happens because
different problems with different probabilities to be faulty can apply to the same
concrete input elements.

A test case specification is composed of three parts: the precondition, the test
sequence, and the expected result. The precondition specifies constraints that are
expected to hold for the state of the server when the test case is executed. It
is derived from the left-hand sides of the rules that must be tested. Conditions
on parameters are not considered as part of the precondition, but contained in
the test sequence which specifies conditions on input parameters together with
the order of service invocations. Conditions on parameters are extracted from
the left-hand sides of rules, too. The expected result is obtained by executing the
rule for the generated input values. Note that a parameter-state pair can trigger
multiple rules associated to the same service. In this case, we accept as correct
any result produced by any of the applicable rules.

If we apply the defined criteria to the service charge in Figure 3, we obtain
the following domains.

– The service is specified by three production rules; hence we have domains
D(p1), D(p2), D(p3) generated from their left-hand sides.

– There is no non-determinism, i.e., the three domains are pair wise disjoint.
– Considering rule p1, there are three attributes that can be defined: payment,

sum(pay.amount)1 and account.value. Test cases are generated by fixing
a boundary value for at least one of them and randomly generating the other
two values. The same applies to rules p2 and p3.

– Each multi-object produces domains for zero, one, and many instances. Thus,
three test cases are generated for each rule: one with an empty set of pay-
ments, one with a set containing one payment, and one with a set containing
n payments.

– Incorrect inputs are generated for each rule by choosing attribute values
that violate the guard conditions. For instance, p1 generates a test case with
negative payments.

1 values obtained by the application of common mathematical functions on multi-
objects are handled as attributes, thus avoiding the use of problem solvers even for
simple cases.
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Currently we limit the generation of random values to linear constraints.
Extensions to non-linear constraints have already been proposed in [11].

Generation of Tests for Sequences of Operations. The execution of an operation
can alter parts of the service’s state that are used by other operations. GT rules
specify state modifications at a conceptual level. By analyzing these rules we can
thus understand dependencies and conflicts between operations without looking
into their actual implementation.

Data flow analysis is frequently used to generate test cases. The idea is to
exercise paths in the code that include combinations of variable definition and
uses [12]. This problem has been extensively investigated and several coverage
criteria have been defined [13]. In particular, a widely used coverage criterion
is “all def-use pairs” [14], which requires a test suite that executes all possible
pairs of definition and uses for variables in the program under test.

Conceptually, each operation (rule) can add or remove nodes and edges to or
from the conceptual state, and can change the values of attributes. The principles
of data-flow testing can be reused to test the interaction among production
rules if creation of nodes and edges is interpreted as “definition” and deletion
as “use”. We expect that sequences of operations that include the creation of
a (conceptual) entity and its subsequent use are likely to expose (state-based)
faults. The formalization of this intuition is given by the relations of conflicts
and casual dependencies between rules.

Given two transformations G
p1=⇒ H1 and G

p2=⇒ H2 like in Figure 4, they are
parallel independent if the application of one does not disable the other. That
means, one transformation does not delete anything necessary for the applica-
tion of the other, does not add anything forbidden by the negative application
condition of the other, and does not modify attribute values used in the guard
condition of the other rule.

G
p1 p2

H1

p2

H2

p1

X

Fig. 4. Independence of transformation steps

Given a sequence of two transformations G
p1=⇒ H1

p2=⇒ X like in Figure 4,
they are sequentially independent if they can be exchanged. This means, as in
the parallel case, that their occurrences do only overlap in such elements that are
preserved by both transformations, and that application and guard conditions
are not affected.

Thus, parallel and sequential independence are defined with respect to given
graphs and occurrences, that is, using run-time concepts. To derive test cases
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from specifications, however, a static definition of potential conflicts and depen-
dencies is required. Therefore, the above notions have to be lifted to the level of
rules. For two rules p1 : L1 → R1 and p2 : L2 → R2 we say that

– p2 may disable p1 if there exist transformation steps G
p1=⇒ H1 and G

p2=⇒ H2

like in Figure 4, such that G
p1=⇒ H1 is not independent of G

p2=⇒ H2,
– p1 may cause p2 if there exist transformation steps G

p1=⇒ H1
p2=⇒ X like in

Figure 4, such that H1
p2=⇒ X is not independent of G

p1=⇒ H1.

The may-disable relation captures possible conflicts among rules and is used
to test sequences of actions that should lead to an error when the last request is
issued, but that can erroneously produce some side effects on the actual state.
The may-cause relation captures possible structural and attribute dependencies
among rules. The may-disable relation is used to test completeness of rules, while
the may-cause relation is used to test the consistency of rules. Formal definitions
for dependencies among rules can be found in [15].

The criterion for generating test cases consists of covering the execution of all
pairs of rules (ps, pt), where ps may disable/cause pt. However, it may be impos-
sible to immediately execute pt after ps. Therefore, a sequence ps, p1, . . . pn, pt

must be generated, where ps may disable/cause pt and the overall effect of
the sequence p1, . . . , pn does not entirely “invalidates” the may disable/cause
relation.

The relation between two rules is based on a set of nodes that have been
deleted or added, or on a set of attributes that have been modified: the entities of
the relation. If further rules are executed between the execution of the two related
rules (ps, pt), the effect of the intermediate rules can overwrite the part of the
state where ps and pt interact, i.e., the entities of the relation can be modified. In
our case, if the effect of p1, . . . , pn modifies all entities of the relation, p1, . . . , pn

entirely invalidates the relation. For the purpose of test case generation, it makes
sense to cover the execution of only those pairs that effectively interact, i.e., the
dependencies have not been overwritten and the conflicts have not been removed
by other rules.

Also in this case, a test case specification is composed of three parts: the
precondition, the test sequence, and the expected result. The precondition for a
particular invocation sequence is obtained by anticipating the preconditions of
all rules in the sequence [16]. The test sequence is given by the sequence of
operations that must be executed and the conditions over the parameters that
must be used for their invocation. Finally, the expected result is obtained by
executing the rules over the concrete values. The concrete test cases are obtained
by randomly generating concrete values that satisfy the constraints.

Potential conflicts and dependencies between rules are automatically com-
puted by the AGG tool [17]. The additional relations deriving from attribute
values can be obtained by simple data-flow analysis over constraints and as-
signments. If we apply this criterion to the running example and focus on rule
p1 of the service withdraw, we derive that the target service is dependent on
rule p1 of openAccount, on rule p1 of charge, on rule p1 of deposit, and on
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rule p1 of service withdraw. Therefore, test cases for opening the account and
withdrawing money, charging payments and withdrawing money, depositing and
withdrawing money, and withdrawing money twice are generated. Moreover, rule
p1 of the withdrawing service is in conflict with itself and with rule p1 of the
closeAccount service. Thus, a test case that closes the account before withdraw-
ing money and a test case that withdraws money twice leading the current de-
posit to a negative value are generated for testing soundness (attributes and pa-
rameters for the latter test case are obtained by randomly generating values that
satisfy all rule constraints and the negation of the condition account.value≥v
in p1). In a similar way, we proceed for the other rules.

The Certified Level of Quality. Once a Web Service has passed the pre-registration
testing phase, the client can rely on a high-quality implementation of the discov-
ered services. In particular, the test cases generated for single services validate
that all specified scenarios are implemented and that the implementation be-
haves according to the specification, at least for some inputs. Moreover, test
cases validate that any internal decision taken by the Web Service satisfies the
specification. Test cases for boundary values and multi-objects also certify that
a range of values representing the normal operation of the service is defined and
that collections are correctly managed in the cases of 0, 1 and multiple elements.
Finally, test cases that violate guard conditions certify that guard conditions are
implemented according to the specification and that a proper reaction mecha-
nism is provided for incorrect inputs.

Test cases for sequences of operations validate that the state of the component
evolves according to the specification at least for pairs of service invocation.
Moreover, test cases check that the Web Service prevents reaching unsound states
by multiple invocation of services.

Some interferences among operations, e.g., the definitions and uses of some
state variables that cannot be deduced from the specification, cannot be au-
tomatically tested. However, clients of high-quality Web Services can rely on
both the implementation of all specified behaviors and the existence of guard
mechanisms for identifying incorrect inputs and effects.

5 Generation of Invocation Sequences

A test case has a precondition that consists of a set of constraints that must
be satisfied by the actual state. Thus, the Web Service must be set to a state
that satisfies the precondition of the test case. We assume that a Web Service
facilitates this goal by providing a testing interface with three basic additional
features:

– the possibility to setting the initial state of the service, possibly choosing
from a set of alternatives representing different situations,

– a set of creator/destructor operations that enable the modification of the
state of the server (if necessary),

– an implementation of the abstraction function.
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A state that enables the execution of a given test case is reached by choosing
an initial state from the set of states provided by the Web Service, and searching
for a suitable sequence of requests that turns the chosen state into one satisfying
the precondition of the test case. Dedicated creator/destructor operations are
not required if the “normal” service interface already enables sufficiently free
creation and deletion of objects on the server.

A similar problem arises in testing sequences of operations, where a trans-
formation sequence must be generated enabling the execution of pairs of related
rules. Both search problems are solved by building a search tree rooted at the
selected initial state(s) and then incrementally considering the different rules.
Each node is labeled with a path condition, i.e., the constraints that must be
satisfied by the state variables to enable the sequence starting from the root
and ending with the considered node. The path condition is derived by merging
and simplifying both the guards and the assignments of single rules. When a
state that satisfies the given properties is identified, the search stops, and the
corresponding sequence is used in the test case. This is essentially the strategy
employed by [18], the first work on model-based testing with GT rules we are
aware of. In that paper, the search tree is in fact the concurrent unfolding of a
grammar.

The search problem is realistic because not all rules can be applied at all
steps and the overall number of rules is generally small for Web Services. For
instance, a meaningful subset of the Amazon Web Service has been specified with
11 GT rules (see Section 6). Moreover, the service provider can further restrict
the search space by uploading a specification of the Web Service interaction
protocol [19]. Goal directed search strategies can heavily increase performance
of the search by considering the structure of the current state, the modifications
performed by the GT rules, and the structure of the final state in the search.
However, a discussion over effective search strategies is out of the scope of this
paper.

Tool support for execution, depth-first search, and bounded state space con-
struction for GT rules is already in place. In particular, Progress allows spec-
ifications based on rules with attributes and various application conditions and
implements search by means of backtracking [20]. Groove [21] can generate
bounded fragments of the transition system described by a set of rules in which
paths to states with particular properties can be detected. Since the tool does
not support attributed graphs, it would have to be complemented with a theo-
rem prover to collect and combine the guard conditions and assignments for the
identified sequence.

Concrete test cases are obtained by randomly generating attribute values
that satisfy the path condition of the test sequence. Once concrete values have
been generated, the expected result can be obtained by executing the rules over
the concrete values. When a test case is executed, the final state of the Web
Service is retrieved using the abstraction function of the testing interface. If the
retrieved final state corresponds to the final state generated by the rules, the
test case has been passed. The conformance relation (see Section 3) requires
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that the result obtained by applying the rule on the conceptual state coincides
with that obtained by the abstraction function on the concrete state reached
after the execution of the test case.

The implementation of this function can be simplified by developing the
system behind the Web Service with the Model-View-Controller (MVC) design
pattern [22]. The design pattern isolates the state of the application (model)
from the rest of the system, i.e., the control logic and the presentation layer.
This strategy simplifies the access to the actual state and reduces the effort
required to the developer for implementing the abstraction function.

Both the specification and the implementation of a service are furnished by
the service provider who can, in principle, “cheat” by providing specifications
and implementations that do not correspond with the final service, but that
can easily pass the testing phase. However, specifications are used by clients
for dynamically discovering services. Therefore, if the specification differs from
the concrete service, the service cannot be successfully used by clients. In the
same way, if the implementation is modified without repeating the testing phase,
the registered specification will not match the provided service and interactions
with clients will not be possible. Thus, the running version of the service, its
specification and the tested implementation must be kept synchronized by the
service provider.

6 Early Experience

We performed a number of small experiments in test case generation for real
Web Services, initially considering two simple Web Services, the Weather - Tem-
perature Web Service available at www.xmethods.com and the Kayak Paddle
Guide available at www.terawave.ca/webservices/paddle.html. The former
provides the current temperature in a given U.S. region. The latter computes
the recommended length of a paddle, given the height of the person who will
use it. Both Web Services provide one single simple operation. We derived the
GT specification from the informal description available on Web. Then we gen-
erated test cases for single operations by sampling two values from each domain.
The Weather - Temperature Web Service has been covered with 4 test cases and
passed the test. The Kayak Paddle Guide has been covered with 6 test cases
and failed the test. The technique discovered a fault for values that are expected
to represent incorrect heights for a person, e.g., 600cm. In this case, the Web
Service returns the longest paddle instead of signaling the incorrect input.

The two Web Services are very simple examples, but their complexity is
representative for a large set of Web Services currently available on the Web.
However, we decided to move to an example closer to the current state of the art
for the Web Service technology. Thus, we considered the Amazon Web Service
at www.amazon.com/gp/aws/landing.html, which provides a full set of func-
tionalities for browsing and purchasing all items available in the Amazon Web
Shop. In our experiment, we considered a comprehensive subset of the provided
operations and we derived the GT specification from the online documentation
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provided by Amazon. In case of failing test cases, we inspected the fault to under-
stand whether the cause is either a fault or an error in the inferred specification.
The operations selected for testing have included the search for DVDs based on
the director’s name and usual operations for cart management, i.e., item addi-
tion, item modification, item deletion, and clearing of the cart. We overcame
the necessity of constructor methods for creating DVDs in the catalog by taking
advantage of the knowledge of the content of the catalog. In a real scenario, the
Web Service should have offered constructor methods for the creation of DVDs
that could be then purchased.

The definition of the rules was straightforward, the five operations were spec-
ified by 11 GT rules. For testing of single rules, we sampled 2 values for each
domain and we obtained 65 test cases. For testing of sequences, 14 dependent
pairs and 3 conflicting pairs were identified. All pairs can be directly executed
without requiring the generation of an intermediate sequence of operations. For
test cases of both single rules and pairs, the initial sequence enabling the exe-
cution of the test case was always generated by the initial addition of a proper
set of items in the cart. In a real scenario, the sequence would include also the
invocation of constructor methods for the creation of DVDs.

Test case execution - which has been performed with a Java client - revealed
an incompatibility between the rules and the Web Service. The incompatibility
arose from a fault in the specification. In fact, in contrast with our rules, the
operation for adding an item did not increase the quantity of items that were
already in the cart, but overwrote the quantity instead, e.g., adding a DVD in
the cart twice results on a single DVD in the cart. Thus, we modified the rule
and generated the test cases again. This time the Web Service passed the test.

Our early experience with the testing of Web Services provided important
insights: The technique is useful with respect to the complexity of current Web
Services; the inspected Web Services do not require the generation of long initial-
ization sequences, thus the search space that must be inspected is very limited;
the number of generated test cases is suitable for a discovery service that auto-
matically performs testing; both test cases for consistency, such as the repeated
addition of items in the cart for the Amazon Web Service, and completeness,
such as the incorrect input height for the Kayak Web Service, revealed to be
useful.

7 Related Work and Conclusions

To our knowledge, there is only one approach to test case generation based on
GT rules [18]. We advance research in this area by proposing two novel ideas: (1)
the application of existing domain-based testing techniques to the case of graph
transformations and (2) the execution of automatic testing for validating Web
Services. The application of domain-based testing requires the management of
the server state as part of the domain, when adapted to graph transformations.
Moreover, data-flow testing needs to be reinterpreted in terms of dependencies



Automatic Conformance Testing of Web Services 47

and conflicts among rules. Finally, the idea of using agencies which automatically
test Web Services before registering them is new.

In contrast with graph-based testing, behavioral descriptions based on UML
sequence diagrams and state charts can be used to generate test cases [23, 24].
However, the generated test cases fail to capture the concrete complexity of
the exchanged parameters that often are restricted to few simple types, see for
instance [24]. Moreover, due to the lack of precise semantics, UML diagrams
cannot precisely describe the evolution of the state of the service. Graph trans-
formations instead are suitable to unambiguously correlate the concrete states
of the objects involved in an interaction with the behavior of a service. This kind
of description enables the automatic generation of test cases that cover complex
parameter passing and behaviors that are activated only for given internal states.

The design of GT rules has been demonstrated to be convenient when com-
bined with a development methodology based on UML [5]. Therefore, the addi-
tional effort on behalf of the service developer for providing high-quality services
is limited to the implementation of the abstraction function and to the eventual
definition of additional constructor methods. The result is the publication of
the Web Service in discovery services that aim at the dynamic composition of
high-quality systems.
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Abstract. Model Transformation has become central to most software
engineering activities. It refers to the process of modifying a (usually
graphical) model for the purpose of analysis (by its transformation to
some other domain), optimization, evolution, migration or even code
generation. In this work, we show termination criteria for model trans-
formation based on graph transformation. This framework offers visual
and formal techniques based on rules, in such a way that model trans-
formations can be subject to analysis. Previous results on graph trans-
formation are extended by proving the termination of a transformation
if the rules applied meet certain criteria. We show the suitability of the
approach by an example in which we translate a simplified version of
Statecharts into Petri nets for functional correctness analysis.

1 Introduction

Diagrams are ever more frequently used in our everyday work as a means for
problem solving, specification and comprehension. Their use is pervasive in areas
such as computer science, with the increasing tool support and popularity of
notations (such as UML), and model-based development processes (such as the
one proposed by the MDA [23]). In this area, we are witnessing a paradigm shift,
where models are no longer mere (passive) documentation, but are used for code
generation, analysis and simulation as well.

Whereas the syntax of most notations is usually well-defined (sometimes by
means of a meta-model), semantics are often specified in a semi-formal way,
which prevents the use of analysis methods. Moreover, sometimes modelling is
easier using a certain notation, but the formalism lacks certain analysis tech-
niques to solve some of the user problems. One way to solve these difficulties
is by specifying transformations from the initial source formalism into a target
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notation [9]. Once the model is translated, we can use the target notation anal-
ysis techniques to solve the initial problem. There are many other scenarios in
which model transformations are present, such as model evolution, migration
(for example between different database schemata or between different versions
of the UML meta-model) or model optimization. Even code generation can be
seen as a transformation into the abstract syntax of the target textual language.

Problem Statement. An important question is how to specify such model trans-
formations. A recent initiative of the Object Management Group aims at devel-
oping a standard for describing Queries, Views and Transformations (QVT) [19]
for UML (in fact, any MOF-based) models. Although the submitted approaches
vary a lot (e.g. in providing textual [26] vs. graphical specifications [22] for trans-
formations), high-level, graph-based and declarative specifications are proposed
in many of the submissions.

The correctness of model transformations, namely, to guarantee that certain
semantic properties hold for a transformation, is also a crucial aspect of transfor-
mation engineering. For instance, when transforming UML models into mathe-
matical domains, the results of a formal analysis can be invalidated by erroneous
model transformations as the systems engineers cannot distinguish whether an
error is in the design or in the transformation. Most typical correctness prop-
erties of a model transformation are termination, uniqueness (confluence) and
behaviour preservation.

Objectives. In the paper, we propose the use of graph transformation [24] over
typed and attributed graphs that provides rule and pattern-based manipulation
of graph models generalizing Chomsky grammars from strings to graphs. The
algebraic approach to graph transformation is based on concepts of category the-
ory (see [11]), and has a rich body of theoretical results that have been developed
in the last 30 years (see [24]). In this way, transformations expressed as graph
grammars become not only graphical and intuitive but also formal, declarative
and high-level models, subject themselves to analysis.

While the use of graph transformation for specifying model transformations
has been under intensive research, the main result of the paper is concerned with
the termination of model transformations. Although termination is undecidable
for graph grammars in general [21], in this paper we show that if graph grammars
with negative application conditions (see [14]) meet suitable termination criteria,
we can conclude that they are terminating. The criteria we propose are based
on assigning a layer to each rule, node and edge label (type).

Structure of the Paper. The rest of the paper is organized as follows: Sec. 2
presents a running example, in which we specify (with graph grammar rules) a
transformation from a restricted version of Statecharts into Petri nets, with the
aim of subsequent analysis. Sec. 3 details the critera for termination of layered
graph grammars. Sec. 4 discusses the application of the criteria to the running
example, and sketches how the criteria can easily be applied to other interesting
model transformation examples. Sec. 5 discusses related work and finally Sec. 6
presents our conclusions and proposals for future work.
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2 Motivating Example: From Statecharts to Petri Nets

In order to illustrate the idea of the proposed criteria for termination of model
transformation we introduce a model transformation from UML statecharts into
Petri nets. The running example is a simplified version of the original trans-
formation that was designed and implemented in the VIATRA system [29] as
part of a Hungarian research project (IKTA 065/2000 – A framework for the
modelling and analysis of dependable and safety critical systems) and discussed
in more details in [28]. The transformation aims at formal verification of safety
critical applications designed by UML statecharts using semi-decision analysis
methods of Petri nets [20] and it was applied on various UML models provided
by the industrial partners of the project. Similar transformations into various
classes of Petri nets carry out dependability and performance analysis for the
system model in early stages of design and their termination could be validated
by the proposed techniques.

2.1 Source Modelling Language: UML statecharts

UML statecharts are an object-oriented variant of classical Harel statecharts
[15] that describe behavioural aspects of (any instance of) a class in the system
under design. In fact, the statechart formalism itself is an extension of finite state
machines to allow a decomposition of states into a state hierarchy with parallel
regions that greatly enhance the readability and scalability of state models.

An extract of the metamodel of UML statecharts is depicted in the upper left
part of Fig. 1 (abbreviated as SC). In fact, this metamodel is a proper extension
of the standard UML metamodel (for which we assume the reader’s familiarity)
that explicitly introduces several notions of statecharts that are only implicitly
present in the standard (such as state configurations, queues, etc.). The necessity
and the guideline of these extensions to obtain a formal operational semantics
of statecharts is discussed in [28, 27].

In the paper, we consider a network of statemachines SM, each of which hav-
ing an associated event queue. A single statemachine captures the behaviour of
any object of a specific class by flattening the state hierarchy into state config-
urations and grouping parallel transitions into steps. 1

A Configuration is composed of a set of States that can be active at a time.
The activeness of a state is indicated by the isAct edge, while the initial config-
uration is identified by the initConf association.

A Step is composed of non-conflicting Transitions (which are, in turn, binary
relations between states) that can be fired in parallel. A step is leading from a
configuration fromConf to a configuration toConf, and it is triggered by a common
Event for all its transitions. The effect of a step is a sequence of Actions. For the
paper, we only consider send actions which send a message to a target (receiver)
queue in the form of a corresponding event.

1 Note that configurations and steps can be collected at compile time, i.e. prior to the
statecharts to Petri nets model transformation (see [28] for further details).
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Fig. 1. The combined metamodel of statecharts and Petri nets

Each statemachine has exactly one associated event Queue (handled as sets
and not FIFOs for presentation purposes) that store Events. The inQueue associ-
ation denotes if a certain event is present in the corresponding event queue. The
set of acceptable events in a certain queue is denoted by the association validEv.

2.2 Target Modelling Language: Petri Nets

Petri nets (abbreviated as PN) are widely used to formally capture the dynamic
semantics of concurrent systems due to their easy-to-understand visual notation
and the wide range of available analysis tools. From a system modelling point
of view, transforming UML models to Petri nets may provide correctness, de-
pendability and performance analysis for the system model in early stages of
design.

Petri nets are bipartite graphs, with two disjoint sets of nodes: Places and
Transitions. Places may contain an arbitrary number of Tokens. A token distri-
bution defines the state of the modelled system. The state of the net can be
changed by firing enabled transitions. A transition is enabled if each of its input
places contains at least one token (if no arc weights are considered). When firing
a transition, we remove a token from all input places (connected to the transition
by InArcs) and add a token to all output places (as defined by OutArcs). A Petri
net metamodel is shown in the upper right corner of Fig. 1.

Reference Metamodel. In order to interrelate the source and target modelling
languages, we use reference metamodels [29]. For instance, a reference node of
type RefState (in Fig. 1) relates a source State to a target Place.
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2.3 Transforming State Machines into Petri Nets

An Informal Overview of Graph Transformation. The model transformation
from state machines into Petri nets is specified by graph transformation rules.

Graph transformation [24] (for the formal treatment see Sec. 3) provides a
rule-based manipulation of graph models. A graph transformation rule consists
of a left-hand side (LHS) graph L, right-hand side (RHS) graph R, and (an
optional) negative application condition N . Informally, L and N of a rule define
the precondition while R defines the postcondition.

The application of a rule to a host model graph G (e.g., a UML model built
by the user) alters the model graph by replacing the pattern defined by L with
the pattern of the R. This is performed by (i) finding a match of the L pattern in
model G; (ii) checking the negative application conditions N which prohibits the
presence of certain model elements; (iii) removing a part of the model M that
can be mapped to the L pattern but not the R pattern yielding an intermediate
graph D; (iv) adding new elements to the intermediate graph D which exist in
the R but not in L yielding the derived graph H. In our example we follow the
Double Pushout Approach [7, 13]. Technical details are given as far as necessary
in Sec. 3.

For a more compact presentation of the rules, we abbreviate the L, N and R
graphs of a rule into one, and we only mark which (the images of) graph elements
need to be removed (del), or created (new). Due to the special structure imposed
by nondeleting rules (to be discussed in Sec. 3), all elements in the negative
application condition N should also be present in R. Therefore, we assume for the
current model transformation that R and N are isomorphic, and we simply omit
the neg tags for the sake of clarity. The graph transformation rule generating
a PN transition for a SC step is depicted in both the mathematical and the
abbreviated notation in the upper-most part of Fig. 2.

The UML Statechart to Petri Net Transformation. Transforming our flat-
tened UML statechart representation (with configurations and steps) into Petri
nets is relatively simple (see the transformation rules and an example in Fig. 2).

– Each SC state is modeled with a respective place in the target PN model
where a token in such a place denotes that the corresponding state is ac-
tive initially (rules ActState2TokenR, State2PlaceR). In addition, places are
generated to model messages stored in event queues of a state machine.
A separate place is generated for each valid event accepted by a certain
queue, and initialized according to the presence of corresponding events
(QueueEvent2PlaceR: the general case; InQueueEvent2TokenR: a special case).

– Each SC step is projected into a PN transition (Step2TransR). Naturally,
the Petri net should simulate how to exit and enter the corresponding states
in the statechart, therefore input and output arcs of the transition should
be generated accordingly (see StepFrom2InArcR and StepTo2OutArcR). Fur-
thermore, firing a transition should consume the token of the trigger event
(Trigger2InArcR), and should generate tokens to (the places related to) the
target (receiver) event queues according to the actions (Action2OutArc).
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Fig. 2. From state machines to Petri nets

– Finally, we clear up the joint model by removing all model elements from
the source and the reference metamodel by another set of graph transforma-
tion rules. For instance, rule delState deletes a State with a corresponding
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RefState, if the state is not active. All the other deleting rules of similar kind
(including those removing reference nodes and edges) are omitted for space
considerations.

3 Termination Criteria for Layered Graph
Transformation Systems

In this section we present and prove termination criteria for layered graph trans-
formation systems, which will be used in the next section to show termination of
our running example. In fact, our termination criteria are valid for a broad class
of graph transformation systems. The criteria for nondeleting rules are based
on the single – or double pushout approach (see [7]). For the applications in
Sec. 2 and 4 we use in this paper typed attributed graph transformation (see
[16, 12]) with injective rule morphisms l : K → L, r : K → R and injective
matches m : L → G. Moreover we use negative application conditions (NACs)
given by an injective morphism n : L → N . The match m : L → G satisfies
the NAC if there is no injective morphism q : N → G with m = q ◦ n. Rule
morphisms are depicted (in Fig. 2) by using the same node identifiers in LHS,
NAC and RHS. Labels LAB can be defined in the traditional way by label sets
or in correspondence with the metamodel.

Now we define layered graph grammars with deletion and nondeletion layers.
Informally, the deletion layer conditions express that the last creation of a node
with a certain label should precede the first deletion of a node with the same
label. On the other hand, nondeletion layer conditions ensure that if an element
of label l occurs in the LHS of a rule then all elements of the same label were
already created in previous layers.

Definition 1 (Layered Graph Grammar). A graph grammar with rules
RUL and labels LAB is called layered graph grammar if for each rule r ∈ RUL
we have a rule layer rl(r) = k with 0 ≤ k ≤ k0 (k, k0 ∈ N) where k0 is the num-
ber of layers. Moreover for each label l ∈ LAB we have a creation and a deletion
layer cl(l), dl(l) ∈ N and each layer k is either a deletion layer or a nondeletion
layer satisfying the following conditions for all r ∈ RUL with rl(r) = k:

If k is a deletion layer
Deletion Layer Conditions

1. r is deleting at least one item

2. 0 ≤ cl(l) ≤ dl(l) ≤ k0
for all l ∈ LAB

3. r deletes l ⇒ dl(l) ≤ rl(r)
4. r creates l ⇒ cl(l) > rl(r)

If k is a nondeletion layer
Nondeletion Layer Conditions

1. r is nondeleting, i.e. K = L s.t.
r : L → R

2. r has NAC n : L → N and
there is an injective n′ : N → R
with n′ ◦ n = r

3. x ∈ L ⇒ cl(label(x)) ≤ rl(r)
4. r creates l ⇒ cl(l) > rl(r)
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For the SC2PN transformation the layer conditions mean, for instance, that
rules creating Place nodes cannot be in the same layer with rule StepFrom2InArcR:
since Place nodes can be used as a pre-condition by a rule (StepFrom2InArcR) only if
its creationhas finished, i.e. there are nomore rules creating Placenodes in the same
layer or above. Thus rules ActState2TokenR, State2PlaceR, InQueueEvent2TokenR,
and QueueEvent2PlaceR has to precede rule StepFrom2InArcR.

The termination of layered graph grammars expresses that no infinite deriva-
tion sequences exist starting from an initial graph if rules are applied within
layers as long as possible.

Definition 2 (Terminationof LayeredGraphGrammars). Alayered graph
grammar with finite start graph G0 and rules RUL terminates, if there is no in-
finite derivation sequence from G0 via RUL = [RULk = {r ∈ RUL | rl(r) =
k}]k=0..k0 , where starting with layer k = 0 rules r ∈ RULk are applied as long
as possible before going over to layer k + 1 ≤ k0.

The termination of layered graph grammars are proved separately for the
deletion and the nondeletion layers.

Lemma 1 (Termination of Layered Graph Grammars with Deletion).
Each layered graph grammar with deletion terminates.

Proof (Lemma 1).
Step 0: Let c0 = card{x ∈ G0|dl(label(x)) = 0}.
By deletion layer conditions 1,3 the application of a rule r to G0 with rl(r) = 0
deletes at least one item x ∈ G0 with label l = label(x) and dl(l) = 0.
Moreover by deletion layer condition 4 each of the rules r can only create items x
with label(x) = l, where cl(l) > 0. This means by using deletion layer condition
2 that only items x with label(x) = l and dl(l) ≥ cl(l) > 0 can be created.
Hence at most c0 applications of rules r ∈ RUL0 are possible in layer 0 leading
to G0 ⇒∗ G1 via RUL0.
Step k: Given graph Gk as result of step (k − 1) for 1 ≤ k ≤ k0 then define
ck = card{x ∈ Gk | dl(label(x)) ≤ k}. Using now rules r with rl(r) = k each
r ∈ RULk deletes at least one item x ∈ Gk with dl(label(x)) ≤ k by deletion
layer conditions 1 and 3 and creates at most items x with cl(label(x)) > k
by deletion layer condition 4 which implies dl(label(x)) ≥ cl(label(x)) > k by
deletion layer condition 2. Hence at most ck applications of rules r ∈ RULk are
possible in layer k leading to Gk ⇒∗ Gk+1 via RULk.
After step n we have at most c = Σk0

k=0ck applications of rules r ∈ R leading to
G0 ⇒∗ Gk0+1, which implies termination. ��

Before proving termination for nondeletion layers, we need to define the no-
tion of essential matches. Informally, an essential match m0 of a match m1 :
L → H1 for a transformation G0 ⇒∗ H1 with G0 ⊆ H1 means that m1 can be
restricted to m0 : L → G0.

Definition 3 (Transformation and Essential Match). Given a nondelet-
ing graph grammar with injective matches a nondeleting rule r is given by an
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injective morphism r : L → R, and a match m : L → G is an injective morphism
leading to a transformation step G ⇒ H via (r,m) defined by the pushout (1) of
r and m, where d : G → H is called tracking morphism of G ⇒ H via (r,m).

L
r ��

m

��
(1)

R

m∗

��
G

d
�� H

Since r and m are injective morphisms, pushout properties (1) imply that also
d and m∗ are injective. Given a transformation G0 ⇒∗ H1 i.e. a sequence of
transformation steps with induced injective tracking morphism d1 : G0 → H1 a
match m1 : L → H1 of L in H1 has an essential match m0 : L → G0 of L in G0
if we have d1 ◦m0 = m1. Note, that there is at most one essential match m0 for
m1, because d1 is injective.

The following lemma (which is proved in Appendix A) states that rules can
be applied at most once with the same essential match.

Lemma 2. In each derivation sequence starting from G0 of a nondeleting lay-
ered graph grammar with injective matches, each rule r : L → R with r ∈ RUL0
can be applied at most once with the same essential match m0 : L → G0 and
m0 |= NAC.

Lemma 3 (Termination of Nondeleting Layered Graph Grammars).
Each nondeleting layered graph grammar with injective matches terminates.

Proof (Lemma 3).
Step 0 Given the start Graph G0 we count for each r ∈ RUL0 with r : L → R
and NAC the number of possible matches m : L → G0 with m |= NAC

c0
r = card{m0|m0 : L → G0 match with m0 |= NAC}

We will show the following:

The application of rules r ∈ RUL0 creates by nondeletion layer condition 4
only new items x with cl(label(x)) > rl(r) = 0, while each item x ∈ L for any
rule r ∈ RUL0 has cl(label(x)) ≤ rl(r) = 0 by nondeleting layer condition 3.
This means that for each derivation sequence G0 ⇒∗ H1 via RUL0 with injec-
tive matches and injective morphism d1 : G0 → H1 (induced from G0 ⇒∗ H1
by nondeleting layer condition 1) each match m1 : L → H1 of some r ∈ RUL0
must have an ‘essential match’ m0 : L → G0 with d1 ◦ m0 = m1.

From Lemma 2 we conclude that in step 0 we have at most

c0 =
∑

r∈RUL0

c0
r

application of rules r ∈ RUL0 leading to G0 ⇒∗ G1 via RUL0.
Step k Given graph Gk as result of step (k − 1) for 1 ≤ k ≤ k0 then define for
each r ∈ RULk with r : L → R and NAC



58 H. Ehrig et al.

ck
r = card{mk | mk : L → Gk match with m |= NAC}.

Similar to step 0 each r ∈ RULk creates only new items x with
cl(label(x)) > rl(r) = k, while each item x ∈ L has
cl(label(x)) ≤ rl(r) = k. Now we can apply Lemma 2 for Gk, RULk, and mk

instead of G0, RUL0, and m0 and can conclude to have at most ck =
∑

r∈RULk
ck
r

application of rules leading to Gk ⇒∗ Gk+1, via RULk.
After step n we have at most c =

∑k0
k=0 ck applications of rules r ∈ RUL leading

to G0 ⇒∗ Gk0+1, which implies termination.
This completes the proof of Lemma 3. ��
Theorem 1 (Termination of Layered Graph Grammars). Each layered
graph grammar with injective matches terminates.

Proof (Theorem 1). Starting with k = 0 we can apply for each deletion layer
the deletion layer conditions (see Lemma 1) and for each nondeletion layer the
nondeletion layer conditions (see Lemma 3). ��

4 Termination Analysis

4.1 Termination Analysis of the Running Example

Now we apply the results (of Sec. 3) to prove the termination of the model
transformation of Sec. 2 from UML statecharts to Petri nets. Therefore, we first
assign the rules of Fig. 2 to four layers (three nondeletion and one deletion layer).
Then the creation and deletion layers of labels (types) in the metamodel of Fig. 1
are set to respect Def. 1. Finally, the check of the conditions in Def. 1 yields the
termination of the transformation according to Theorem 1.

Assigning Rule Layers. Let us define four layers for the model transformation
rules of Fig. 2 as follows:

Layer 0 Layer 1 Layer 2 Layer 3
nondeletion nondeletion nondeletion deletion
rl(r) = 0 rl(r) = 1 rl(r) = 2 rl(r) = 3
Step2TransR State2PlaceR StepFrom2InArcR delState
ActState2TokenR QueueEvent2PlaceR StepTo2OutArcR

InQueueEvent2TokenR Trigger2InArcR
Action2OutArcR

Assigning Layers to Labels (Types). We define a possible way to automatically
assign creation and deletion layers to each label (type) in the metamodel based
upon the previous layer definitions for rules.

Definition 4 (Layer assignments). If we have a start graph G0 with start
labels T0 ⊆ LAB and then we can define for each l ∈ LAB the creation and
deletion layers as follows
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cl(l) = if l ∈ T0 then 0 else max{rl(r)|r creates l} + 1
dl(l) = if l is deleted by some r then min{rl(r)|r deletes l} else k0

As only the elements in the source language are present initially in a model
transformations, exactly those labels are included in the start labels T0. Now
the creation and deletion layer of labels are assigned as follows (only a subset of
labels are considered due to space limitations).

Src label ls cl(l) dl(l) Ref label lr cl(l) dl(l) Trg label lt cl(l) dl(l)
State 0 3 RefState 2 3 Place 2 4
Step 0 3 RefStep 1 3 Trans 1 4
Queue 0 3 RefQEvnt 2 3 Token 2 4
Event 0 3 InArc 3 4
Conf 0 3 OutArc 3 4

Checking Conditions of Termination. Finally we show how the sufficient condi-
tions of deletion and nondeletion layers in Def. 1 are fulfilled by the previous
layer assignments.

– Nondeletion Layer Conditions. First, we notice that Conditions 1 and 2
are straightforwardly guaranteed by the construction (as NAC is isomor-
phic/identical with RHS). Now we only show the validity of Condition 3
and 4 for a single rule, namely, r = StepFrom2InArcR (while the rest of the
rules can be checked similarly). In Condition 3, for each graph element x
in the LHS, we need to check cl(label(x)) ≤ rl(r), which holds according to
the layer assignments above (as maxx∈L{cl(label(x)} = 2 and rl(r) = 2).
Condition 4 states that cl(l) > rl(r) for all l created by r which is justified
by cl(InArc) = 3 and rl(r) = 2 (and similar reasoning on edges).

– Deletion Layer Conditions. As a first observation, Condition 1 trivially holds
for the deletion rules of Layer 3. Condition 2 can be verified according to the
table above. Since all deletion rules in Fig. 2 are included in the last layer,
Condition 3 holds directly. Finally, the fact that these deletion rules do not
create new elements implies Condition 4.

Furthermore, we carried out critical pair analysis using the AGG system [1],
which builds upon the confluence results of [13]. As the graph transformation
rules within a single layer are free of critical pairs (potential conflicts), we can
conclude that our model transformation is a well-defined function from the class
of statecharts to that of Petri nets (i.e. it yields a unique result).

4.2 Further Case Studies

From the General Resource Model (GRM) to Petri Nets. In order to provide
Petri net-based simultaneous optimization and verification of resource alloca-
tion problems, in [8] we aim at generating the application specific Petri net
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model from a variant of the General Resource Modeling framework (GRM) [18]
using attributed graph transformation. The graph transformation system (im-
plemented in AGG [1]) consists of five rule layers as follows (where layers 0 and
2 are nondeletion layers while the others are deletion layers):

1. Target model elements are derived from core GRM elements like resource
types, activities, and control flow elements;

2. Petri net transitions and arcs are created between the already transformed
Petri net items according to the control flow in the source model;

3. The start and the end points of the process are marked by auxiliary edges;
4. The quantitative attributes of the Petri net elements are set;
5. All the auxiliary edges and the source model elements are deleted.

Since the rules are applied to the host graph using injective matches only, and
the GTS with a valid source model satisfies the Layered Graph Grammar Defi-
nition (Def. 1), the graph grammar fulfills the termination criteria of Theorem 1
hence the graph grammar terminates.

From Process Interaction Diagrams to Timed Petri Nets. In [9], a model trans-
formation from a Process Interaction notation to Timed Transition Petri nets
is specified using graph transformation. The source language is customized to-
wards the area of manufacturing and allows building and simulating networks
of machines and queues through which pieces can flow. For the mapping, timed
transitions depict service times of machines, places are used to model queues
and machine states, and finally pieces are mapped to tokens. The transforma-
tion was divided in four layers, the first one being nondeleting, while the rest are
deleting. The first layer creates Petri net elements connected to the source ele-
ments. Rules in the second layer delete the pieces in the model, creating tokens
in the appropriate places. In the third layer, we connect the Petri net elements
following the connectivity of the source language elements. In addition, the con-
nectivity of the Process Interaction elements is deleted. Finally, the last layer
deletes the Process Interaction elements. The languages and the transformation
were defined with the AToM3 tool [10], and then analyzed using AGG.

5 Related Work

Termination of graph transformation systems is undecidable in general [21], but
several approaches have been considered to restrict a graph transformation sys-
tem such that termination can be shown. The classical approach of proving
termination is to construct a monotone function that measures graph proper-
ties, and to show that the value of such a function decreases with every rule
application. Concrete criteria such as the number of nodes and edges of cer-
tain types have already been considered by Aßman in [2]. However, he sticks to
these concrete criteria, while Bottoni et.al. [5] developed a general approach to
termination based on measurement functions.
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With respect to termination for graph transformation systems, the current
work generalizes and formalizes the work begun at [9]. This, in fact, is an ex-
tension of the layering conditions for deleting grammars proposed in [6], which
were used for parsing.

With respect to the transformation from Statecharts into Petri nets, in [10]
graph grammars were also used to describe the translation. In that approach,
Statecharts were restricted to be flat (no hierarchy), termination was not proven
and intermediate elements for linking source and target language elements were
not formally defined.

6 Conclusion

In this paper, we have presented termination criteria for model transformation
expressed as graph transformation. The criteria are based on dividing the gram-
mar in (deleting or nondeleting) layers. A running example, showing a trans-
formation from Statecharts into Petri nets was verified to be terminating. The
applicability of the criteria to other examples was also discussed. The proposed
termination checks are available in AGG Version 1.2.4 [1].

We believe that our results can also be useful for proving the correctness of
QVT-based model transformations. For instance, triple graph grammars (TGG)
[25] provide a declarative means to specify model transformations, and show a
strong conceptual correspondence with bidirectional QVT mappings. Moreover,
a pair of traditional (operational) graph transformations can be easily derived
for each TGG rule, and then our termination criteria become directly applicable.

In the future, it will be interesting to extend the termination criteria to graph
grammars with abstract rules [3]. These rules may contain nodes whose typing
is abstract, and are equivalent to all the rules resulting from the substitution of
the abstract nodes by nodes in its inheritance tree. This extension would allow
to use type graphs with inheritance for the definition of the source and target
languages in a model transformation.
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16. Heckel, R., Küster, J., Taentzer, G. 2002. Towards Automatic Translation of UML
Models into Semantic Domains . In Proc. of APPLIGRAPH Workshop on Applied
Graph Transformation (AGT 2002).
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A Proofs

Lemma 2. In each derivation sequence starting from G0 each rule r : L → R
with r ∈ RUL0 can be applied at most once with the same ‘essential match’
m0 : L → G0 and m0 |= NAC.

Proof (Lemma 2). Assume that in G0 ⇒∗ H1 rule r has been applied with the
same ‘essential match’ m0 already. This means we can decompose G0 ⇒∗ H1

into G0 ⇒∗ G ⇒ H ⇒∗ H1 with pushout(1) and injective morphisms G0
g→

G
d→ H

h1→ H1 satisfying d1 = h1 ◦ d ◦ g and d1 ◦ m0 = m1 in Figure 3.
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Fig. 3. Second Application of Rule r with same essential match m0

In order to prove the lemma now it is sufficient to show that m1 : L → H1
does not satisfy the NAC of r, i.e. m1 �|= NAC, where the NAC is given by an
injective morphism n : L → N with n′ : N → R injective satisfying n′ ◦ n = r
by condition 2. In fact we are able to construct an injective q1 : N → H1 with
q1 ◦ n = m1.
Let q1 = h1 ◦m∗ ◦n′, then q1 is injective because n′,m∗ and h1 are injective and
injectivity of m∗ follows from injectivity of match m. Moreover we have:

q1 ◦n = h1 ◦m∗ ◦n′ ◦n = h1 ◦m∗ ◦r = h1 ◦d◦m = h1 ◦d◦g ◦m0 = d1 ◦m0 = m1

This completes the proof of lemma 2. ��
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Abstract. Graphs are a common means to represent structures in models and
meta-models of software systems. In this context, the description of model do-
mains by classifying the domain entities and their relations using class diagrams
or type graphs has emerged as a very valuable principle. The constraints that can
be imposed by pure typing are, however, relatively weak; it is therefore com-
mon practice to enrich type information with structural properties (such as local
invariants or multiplicity conditions) or inheritance.

In this paper, we show how to formulate structural properties using graph con-
straints in type graphs with inheritance, and we show how to translate constrained
type graphs with inheritance to equivalent constrained simple type graphs. From
existing theory it then follows that graph constraints can be translated into pre-
conditions for productions of a typed graph transformation system which ensures
those graph constraints. This result can be regarded as a further important step of
integrating graph transformation with object-orientation concepts.

1 Introduction

Graphs and graphical representations play a central role in modeling and meta-modeling
of software systems. Graphs are used to describe essential structures of entities and their
relations. Their representation ranges from simply formatted, graph-like notations such
as class diagrams, Petri nets, automata, etc. to more elaborated diagram kinds such as
message sequence charts and to more application-specific notations for modeling, e.g.,
for industrial production processes.

In graph-based modeling and meta-modeling, graphs are used to define the static
structure, such as class and object structures, data base schemes, as well as visual symbols
and interrelations, i.e., visual alphabets and sentences. Graph manipulations describe the
dynamic changes of these structures. Classifying the possible entities and interrelations
in static system structures or visual language constructs isas a valuable principle for
the description of model domains. In the object-oriented approach, class diagrams are
the basic means to specify classification structures; e.g., in UML (Unified Modeling
Language) [11] for software systems and MOF (Meta Object Facility) [11] for visual
language specification. When applying graph transformation for modeling or meta-
modeling, type graphs are used to classify graph nodes and edges.
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One of the main principles to handle complex classification structures comes from the
object-orientation paradigm: class inheritance enhances the typing principle by adding
more abstract types on top of the ones concretely used in the (meta)models. Inheritance
allows much more compact representations by reducing redundancy. The principle of
inheritance has been carried over and formalized for graph transformation in [2]; there
we have shown that node inheritance in typed graph transformation leads to a denser
form of a graph transformation system, by a simular reduction of redundancy.

The power of pure typing to describe and constrain the static structure is, however,
relatively weak (and is not enhanced by inheritance). It is therefore common practice to
enrich type information with structural properties which further constrain the correct
instances. A typical class of such structural properties are multiplicity conditions, which
restrict correctly typed structures to those where the numbers of entities and interrelations
are within given ranges. Further constraints can be local invariants which require, e.g.,
the existence or non-existence of certain substructures. In class diagrams, some of these
constraint kinds are built-in, like multiplicities, while others have to be stated by separate
constraints using, e.g., OCL [11]. On the other hand, typed graphs can be equipped with
graph constraints, as proposed first in [9], which can be used to describe a variety of
local invariants. Note, however, that graph constraints have so far been studied for flat
graphs only (i.e., without node type inheritance).

The object-oriented and graph transformation approaches can be integrated by iden-
tifying classes with node types, and associations with edge types. In this way, class
inheritance naturally corresponds to node type inheritance. In this paper we show how
to express multiplicities and edge inheritance by graph constraints over type graphs
with inheritance. Furthermore, we give a translation of constrained type graphs with
inheritance to constrained flat type graphs. From existing theory [6] it then follows that
graph constraints can be translated into (necessary and sufficient) pre-conditions for
typed graph transformation rules. Our result can be regarded as a necessary further step
of integrating graph transformation with object-orientation concepts. Application areas
for the resulting theory are for instance: operational semantics for object-oriented sys-
tems as in [4] (leading to a theory of behavioral verification) and refactoring as in [10]
(leading to a formal underpinning). We use a running example from the former area.

The paper is organized as follows: In the next section, we recall type graphs with
node type inheritance as introduced in [2]; this will be the basis for further development.
In Section 3 defined graph constraints over type graphs with inheritance and presents a
translation to constraints over simple type graphs. Then Section 4 shows that multiplic-
ities and edge inheritance are expressible by graph constraints. Section 5 describes how
graph constraints can be ensured by typed graph transformation systems, reusing and
extending the results in [6]. All proofs are omitted due to lack of space.

2 Type Graphs with Node Type Inheritance

The basic idea for specifying node type hierarchies is to introduce a special kind of
(directed) edges, called inheritance edges, into type graphs. The source node of an
inheritance edge is said to be a sub-type of the target node, which is called the former
one’s super-type. Moreover, nodes are marked either as concrete or abstract; we will
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Fig. 1. A sample type graph with node type inheritance, and its abstract and concrete closure

see that only concrete type nodes can have direct instances. In host graphs only nodes
of concrete types shall occur, while graphs in rules may contain nodes of both types.

Definition 1 (type graph with inheritance). A type graph with inheritance is a triple
TGI = (TG , I,A) consisting of a type graph TG = (N,E, s, t) (with a set N of nodes,
a set E of edges, source and target functions s, t : E → N ), an acyclic inheritance
relation I ⊆ N × N , and a set A ⊆ N , called abstract nodes. For each x ∈ N ,
the inheritance clan is defined by clanI(x) = {y ∈ N | (y,x) ∈ I∗}, where I∗ is the
reflexive-transitive closure of I .

Example 1. As sample type graph we use TGI in Fig. 1. This describes a special kind of
sets, namely ordered sets, which contain a number of objecs (indicated by cnt-edges from
OrderedSet-nodes to Object-nodes) which can be put into some order (indicated by
nxt-edges among the object). We consider two possible specializations of ordered sets,
namely StringSet and IntegerSet, which are intended to contain Strings and Integers,
respectively. Note that the type graph by itself does not yet enforce this constraint: that
is, it does not rule out that StringSets contain also Integers, and vice versa.

To benefit from the existing theory of graph transformation [5], which does not recog-
nize the notion of inheritance, we define the flattening or closure of type graphs with
inheritance to ordinary ones.

Definition 2 (Closure of type graph with inheritance). Let TGI = (TG , I,A) be
a type graph with inheritance, and let TG = (N,E, src, tar). The abstract closure of
TGI is the graph TGI = (N,E, src, tar) with

– E = {(n1, e, n2) | e ∈ E, n1 ∈ clanI(src(e)), n2 ∈ clanI(tar(e))};
– src((n1, e, n2)) = n1;
– tar((n1, e, n2)) = n2.

The concrete closure of TGI is the graph T̂GI = TGI |N−A.3

3 Given a graph G = (N, E, s, t) and a set X ⊆ N , we denote by G|X the sub-graph (X, EX =
{e ∈ E | s(e), t(e) ∈ X}, s|EX , t|EX ).
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Fig. 2. Sample clan-typed graph

Example 2. Fig. 1 also shows the abstract and concrete closure of the type graph with
inheritance TGI . Please note that for better readability of the closures, the edge types
are bundled using auxiliary nodes. Note that the inheritance edges are no longer present
in the closure, and the abstract node types and adjacent edge types are absent from the
concrete closure. Instead, for all combinations of corresponding sub-types a new edge
type is inserted — including those which do not follow our intuition, like edge type nxt
between String and Integer. We will use structural graph properties in addition to rule
out those unwanted structures.

The distinction between the abstract and the concrete closure of a type graph is necessary,
since they give rise to different instances. We will define abstract graph transformation
rules of which the left hand and right hand sides are typed over the abstract closure (see
Sect. 5), whereas ordinary host graphs and concrete rules are typed over the concrete
closure.

Definition 3 (instance graph). An abstract instance graph (G, tpA) of a type graph
with inheritance TGI is an instance graph of TGI ; i.e., tpA : G → TGI . Analogously,

a concrete instance graph (G, tpC) of TGI is a graph typed over T̂GI .

Note that, due to the canonical inclusion incTG : T̂GI ↪→ TGI , all concrete instance
graphs are abstract instance graphs. The construction of the closure in Def. 2 gives
rise to a characterization of instance graphs directly on type graphs with inheritance.
Namely, instance graphs can be typed over the type graph with inheritance by a pair of
functions, from nodes to node types and from edges to edge types, respectively. This pair
of functions does not constitute a graph morphism, but will be called clan morphism; it
uniquely characterizes the type morphism into the flattened type graph.

Definition 4 (clan morphism). Let TGI = (TG , I,A) be a type graph with in-
heritance. A clan-morphism from G to TGI is a pair ctp = (ctpN : NG →
NTG , ctpE : EG → ETG) such that for all e ∈ EG the following holds:

– ctpN ◦ sG(e) ∈ clanI(sTG ◦ ctpE(e)) and
– ctpN ◦ tG(e) ∈ clanI(tTG ◦ ctpE(e)).

(G, ctp) is called a clan-typed graph. ctp is called concrete if ctp−1
N (A) = ∅.

Example 3. Fig. 2 shows a sample instance graph typed over TGI of Fig. 1. The edge
typing is not shown explicitly, but follows uniquely from the node typing. The typing is
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done by a clan morphism which maps each node to its node type and each edge to an
edge type between potentially more abstract node types holding the source and target
types of the instance edge in their clans.

Proposition 1 (universal clan morphism, see [1]). Let TGI = (TG , I,A) be a type
graph with inheritance. There is a universal clan morphism uTG : TGI →TG such that
for each clan morphism ctp : G→TG there is a unique graph morphism tp : G→TGI
with uTG ◦ tp = ctp.

We often write G for the clan-typed graph (G, ctpG). To formalize the relationship
between abstract and concrete rules (see Sect. 5), we introduce the notion of type refine-
ment. This imposes an order over the set of clan morphisms of a given instance graph:
one clan morphism is said to be finer than another if it assigns more concrete node types
to the instance graph nodes.

Definition 5 (type refinement and typed graph morphism). Let TGI = (TG , I,A)
be a type graph with inheritance, and let ctp, ctp′ : G → TG be clan typings. ctp is a
refinement of ctp′, denoted ctp ≤ ctp′, if

– ctpN (n) ∈ clanI(ctp
′
N (n)) for all n ∈ NG, and

– ctpE = ctp′
E .

Given clan-typed graphs (G, ctpG) and (H, ctpH) over TGI , a morphism g : G → H
is called type-refining if g ◦ ctpH ≤ ctpG, and type-preserving if g ◦ ctpH = ctpG.

We write (G, ctpG) ≤ (H, ctpH) if G = H and ctpG ≤ ctpH . We write g : G→c H to
denote that G and H are both concrete and g is an injective type-preserving morphism,
and g : G →a H to denote that g is an injective type-refining morphism. The following
proposition states some facts regarding type-refining and type-preserving morphisms.

Proposition 2. Let G,H be clan-typed graphs, and let g : G → H be type refining.

1. There is a unique clan-typed graph K ≤ G such that g : K →H is type-preserving;
2. For any clan-typed graph K ≥ G, g : K → H is type-refining.
3. For any clan-typed graph K ≤ H , g : G → K is type-refining.

3 Structural Properties over Type Graphs with Inheritance

The following definition extends the concept of graph constraints, originally introduced
in [9] (where they are called consistency constraints). There are two points of change:

– We define constraints over concrete clan-typed graphs rather than ordinary typed
graphs. However, this is not a real extension since (due to Prop. 1), there is a one-to-
one correspondence between concrete clan morphisms and type morphisms to the
concrete closure of the type graph.

– We allow constraints with multiple, disjunctively interpreted conclusions, rather
than a single conclusion, as in [9, 6]. This is a real extension, as it properly enlarges
the set of properties expressible through graph constraints.

Whenever we mention “clan-typed graphs” in the following, we mean graphs with a
clan morphism to some implicit, globally given type graph with inheritance TGI .
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Definition 6 (graph atoms and formulae). Let L,G be clan-typed graphs, such that
G is concrete.

– A concrete [abstract] graph atom A over L is a tuple (n : L→c P,Con) [(n : L→a

P,Con)], where n is an injective type-preserving [type-refining] morphism, and
Con is a set of injective type-preserving [type-refining] morphisms starting in P . If
L = ∅ we also write (P,Con) for A.

– A is said to be satisfied by an injective type-preserving [type-refining] morphism
m : L →c G [m : L →a G], denoted m |=c A [m |=a A], if for all injective type-
preserving [type-refining] morphisms p : P →c G [p : P →a G] such that m = p◦n,
there is a (q : P → C) ∈ Con and an injective type-preserving [type-refining]
morphism c : C →c G [c : C →a G] such that p = c ◦ q. If L = ∅ (i.e., the empty
graph) then we also write G |=c A [G |=a A].

– A concrete [abstract] graph formula F over L is a boolean formula over concrete
[abstract] graph atoms over L. The satisfaction relation |=c [|=a] is extended to
graph formulae by defining the semantics of the boolean operators in the usual way.
We call F a constraint if L = ∅, and an application condition otherwise.

Example 4. Fig. 3 shows three atoms over the type graph with inheritance TGI in Fig. 1.
In this and later pictures we depict graph atoms (L → P, {P → Ci}i) more compactly
as L → P → {Ci}i.

– A1 is satisfied by a morphism that selects an element without an outgoing nxt-edge;
– A2 is satisfied by a graph if every OrderedSet is empty, i.e., contains no elements;
– A3 is satisfied by a graph if for every OrderedSet and every pair of distinct elements

contained in it, (at least) one element as an outgoing nxt-edge. Note that the graphs
in the set on the right hand side are to be interpreted disjunctively.

A2 and A3 range over the same graph L, viz. the empty graph: in fact, they are constraints
and can be combined into the formula A2∧A3. A1, on the other hand, cannot be combined
with A2 or A3 into one formula, since they are atoms over different graphs.

We can now define the flattening of an abstract atom and an abstract formula.

Definition 7 (flattening). Let K, L be clan-typed graphs such that K ≤ L and K is
concrete.

– For any abstract graph atom A = 〈n : L →a Q,Con〉, the K-flattening of A is
defined by:

flatK(A) =
∧ {(n : K →c P,flatP (Con)) | P ≤ Q}

flatP (Con) = {q : P →c C | (q : Q →a D) ∈ Con,C ≤ D} .

– For any abstract graph formula F over L, the K-flattening flatK(F ) is defined
by replacing each abstract graph atom A occurring in F by the corresponding
K-flattening flatK(A).

In the next secion we give some examples of flattening. The following theorem is the main
contribution of this paper. It states that satisfaction of an abstract atom or formula over
an abstract clan-typed graph L by a type-refining morphism m : L →a G is equivalent
to satisfaction of the flattening of that atom or formula with respect to the concrete clan-
typed graph K ≤ L for which m : K →c G is type-preserving (which uniquely exists
due to Prop. 2.1). This allows us to re-use existing theory on concrete graph formulae.
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Fig. 3. Three example graph atoms

Theorem 1 (flattening of abstract graph formulae). Let K, L,G be clan-typed graphs
such that K ≤ L, and let m : K→cG. For any abstract graph atom A and graph formula
F over L the following holds:

(m : L →a G) |=a A iff (m : K →c G) |=c flatK(A)
(m : L →a G) |=a F iff (m : K →c G) |=c flatK(F ) .

The proof relies on the fact that the flattening defined in Def. 7 “predicts” all concrete
ways in which the abstract atom and formula could be satisfied, by taking conjunctions
resp. disjunction over all concrete instance graphs that are≤-predecessors of the abstract
premises and conclusions.

4 Multiplicities and Edge Inheritance as Graph Formulae

In this section we show that two existing classes of constraints on type graphs with
inheritance can be translated to abstract graph formulae. This serves to give some intu-
ition about graph formulae, and to demonstrate that they are expressive enough to cover
practically useful examples. (It should be noted, however, that there are many graph
constraints that do not fall into either of these classes: for instance, A3 in Fig. 3 cannot
be expressed through multiplicities or edge inheritance.

Multiplicities. By enriching a type graph with multiplicities we can restrict the class of
instance graphs to those which are not only correctly typed but also satisfy additional
constraints concerning the number of nodes and edges for each type. These constraints
are expressed using so-called multiplicities.

Definition 8 (multiplicities). A multiplicity is a pair [i, j] ∈ N × (N ∪{∗}) with i ≤ j
or j = ∗. The set of multiplicities is denoted Mult . The special value ∗ indicates that
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the maximum number of nodes or edges is not constrained. For an arbitrary finite set X
and [i, j] ∈ Mult , we write |X| ∈ [i, j] if i ≤ |X| and either j = ∗ or |X| ≤ j.

As usual, we use multiplicities to decorate the nodes and edges of type graphs. For the
nodes, the multiplicity indicates the total number of instances; for the edges, we use
multiplicities expressing the number of incoming, respectively outgoing edges for each
target, respectively source instance.

Definition 9 (Type graph with multiplicities). A type graph with multiplicities is a
tuple TGM = (TGI ,mN ,msrc ,mtar ) consisting of a type graph with inheritance
TGI and additional functions mN : NTGI → Mult , called node multiplicity function,
and msrc ,mtar : ETGI → Mult , called edge multiplicity functions.

The satisfaction of multiplicity constraints is expressed by counting inverse images with
respect to the clan typing.

Definition 10 (Semantics of type graphs with multiplicities). A clan-typed graph
G over TGI = (TG , I,A) is said to satisfy a type graph with multiplicities
(TGI ,mN ,msrc ,mtar ) if the following conditions hold:

– for all n ∈ NTG , |ctp−1
G (clanI(n))| ∈ mN (n);

– for all e ∈ ETG and p ∈ ctp−1
G (clanI(src(e))), |ctp−1

G (e)∩ src−1
G (p)| ∈ mtar (e);

– for all e ∈ ETG and p ∈ ctp−1
G (clanI(tar(e))), |ctp−1

G (e)∩ tar−1
G (p)| ∈ msrc(e).

We now show how a type graph with multiplicities TGM can be translated to an abstract
graph formula that is satisfied by precisely those clan-typed graphs that also satisfy
TGM . In order to do that, we introduce two special types of graphs: for all i ∈ N ,

– For all n ∈ N , Gn
i is the graph consisting of i distinct n-typed nodes.

– For all e ∈ E, Ge,src
i is the set of graphs with i distinct e-typed edges and all source

nodes glued together; dually, Ge,tar
i is the set of graphs with i distinct e-typed edges

and all target nodes glued together.

Definition 11 (Multiplicities as abstract graph formulae). Given a type graph with
multiplicities TGM = (TGI ,mN ,msrc ,mtar ), we define

FTGM =
∧

n∈NTGI
Fn ∧ ∧

e∈ETGI
(F src

e ∧ F tar
e )

where Fn, F src
e and F tar

e are abstract graph formulae defined as follows:

– Fn regulates the node multiplicity of n. Let mN (n) = [i, j]; then Fn = An≥i∧An≤j

if j �= ∗ and Fn = An≥i otherwise, where

An≥i = (∅, {∅ → Gn
i })

An≤j = (Gn
j+1, ∅) .

– F src
e regulates the edge source multiplicity of e. Let msrc(e) = [i, j]; then F src

e =
Asrc

e≥i ∧ F src
e≤j if j �= ∗ and F src

e = Asrc
e≥i otherwise, where

Asrc
e≥i = (Gtar(e)

1 , {qtar : G
tar(e)
1 → H | H ∈ Ge,tar

i })
F src

e≤j =
∧ {(H, ∅) | H ∈ Ge,tar

j+1 }
with qtar mapping the sole node of G

tar(e)
1 to the unique target node of H .
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Fig. 4. Type graph with multiplicities, respectively edge inheritance

– F tar
e regulates the edge target multiplicity of e, and is the exact dual ofF src

e (obtained
by switching src and tar everywhere in the above definition).

The following theorem states that this formula indeed expresses the multiplicity seman-
tics according to Def. 10. The proof is omitted here.

Theorem 2 (semantics of multiplicities). For all type graphs with multiplicity TGM
and all graphs G clan-typed over TGI , G satisfies TGM (in the sense of Def. 10) if
and only if G |=a FTGM .

Example 5 (multiplicity constraints). In Figure 4 (left hand side), the type graph TGI
of Fig. 1 has been extended with multiplicities at edge types. For the notation of mul-
tiplicities we follow UML. Each object has always to belong to precisely one ordered
set. This statement contains two constraints: a lower and an upper bound, which in this
case are both equal to 1. Vice versa, ordered sets are allowed to contain arbitrarily many
objects, which is indicated by an asterisk. The nxt relation on objects is constrained to a
partial order where at most one object is nxt, but each object may have arbitrarily many
predecessors. This results in the five graph constraints depicted in Figure 5. (Note that
we have omitted the empty initial graph.) The first constraint states that every object
is contained in a set (which is a positive constraint), the next two that an object is not
allowed to have two outgoing containment edges, neither to different nor to the same
OrderedSet node (which are negative constraints), and the last two constraints (also
negative) express that an object does not have two successor objects.

The next step is to flatten these graph constraints; i.e., we formulate graph constraints
w.r.t. the concrete closure T̂GI also given in Fig. 1. Some representatives of the flattened
constraints are shown in Fig. 6. The first of these is the complete flattening of the first
constraint in Fig. 5; the second and third show two of the four atomic constraints that
constitute the flattening of the second constraint in Fig. 5.

Edge Inheritance. As we have seen, node inheritance is used to formulate a compact
type graph in the sense that edge types between super types stand for all combinations
of edge types between their sub-types (including themselves). This might lead to a type
graph with too loose type information concerning edges. In the following, we introduce
edge type inheritance, which aims at restricting the combinations of sub-types allowed.
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Fig. 5. Multiplicity constraints as abstract graph atoms

Fig. 6. Flattened multiplicity constraints

Definition 12 (type graph with edge inheritance). A type graph with edge inheritance
is a tuple (TG , I,A) where I ⊆ (N × N) ∪ (E × E) is an acyclic relation such
that TGI = (TG , I|N ,A) is a type graph with (node) inheritance, and moreover,
(e, f) ∈ I ∩ (E × E) implies src(e) ∈ clanI(src(f)) and tar(e) ∈ clanI(tar(f)).

The idea is that if a type edge e inherits from another type edge f , then f can occur
as an edge type only for concrete graph edges whose source and target node types are
not in the clan of the source type, resp. target of e. The semantics of edge inheritance
can either be expressed by redefining the closure, or directly as a constraint on the clan
morphism. In other words, if the source or target node of an edge would allow e as an
edge type, then no proper super-type of e may be used.

Definition 13 (semantics of type graphs with edge inheritance). A clan-typed graph
G over TGI is said to satisfy a type graph with edge inheritance (TG , I,A) for which
TGI = (TG , I|N ,A) if for all x ∈ EG and (e, ctpG(x)) ∈ I , ctpG(srcG(x)) /∈
clanI(srcTG(e)) and ctpG(tarG(x)) /∈ clanI(tarTG(e)) .

We now construct an abstract graph formula which expresses the same constraint.

Definition 14 (edge inheritance as an abstract formula). Given a type graph with
edge inheritance TGEI = (TG , I,A), define FTGEI =

∧
(e,f)∈IE

Asrc
e,f ∧ Atar

e,f where

Asrc
e,f = (Gsrc(e),f,tar(f), {qe,f : Gsrc(e),f,tar(f) → Gsrc(e),e,tar(e)})

Atar
e,f = (Gsrc(f),f,tar(e), {qe,f : Gsrc(f),f,tar(e) → Gsrc(e),e,tar(e)}) .



74 G. Taentzer and A. Rensink

Fig. 7. Edge inheritance as graph constraints

Fig. 8. Flattened edge inheritance constraints

with Gn1,e,n2 for n1 ∈ clanI(src(e)) and n2 ∈ clanI(tar(e)) being the graph consist-
ing of two nodes typed over n1 and n2, and one edge typed over e. qe,f is the unique
type-refining morphism between the source and target graph.

The following theorem states that this formula indeed expresses the satisfaction of the
edge inheritance relation, according to Def. 13. The proof is omitted here.

Theorem 3 (semantics of edge inheritance). For all type graphs with edge inheritance
TGEI = (TG , I,A) and all graphs G clan-typed over (TG , I|N ,A), G satisfies TGEI
(in the sense of Def. 13) if and only if G |=a FTGEI .

Example 6 (edge inheritance constraints). In Figure 4 (right hand side) we extended
the type graph of Fig. 1 with edge type inheritance, depicted by (dashed) inheritance
arrows between edges. Hence this type graph expresses (among other things) that an
instance may not contain a nxt-edge from a String-typed node to anything but another
String-typed node — in particular not to an Integer-typed node — or to a node typed
by a subtype of String(of which there are none in this example).

Similarly to the example above, we flatten these graph constraints, i.e., we formulate
graph constraints w.r.t. the concrete closure T̂GI given in Fig. 1. The constraints shown
in Fig. 8 are the complete flattening of the first constraint in Fig. 7. Note that the first
flattened constraint is always true, and the second describes a handle not allowed by the
edge inheritances.

5 Ensuring Abstract Graph Formulae

Having defined the concept of abstract graph formulae and shown their utility in for-
malizing node multiplicities and edge inheritance, we now turn to the issue of ensuring
graph constraints (not arbitrary formulae) in a given graph transformation system. A
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graph transformation system is said to ensure a graph constraint if all the graphs that
can be derived satisfy the constraint; in other words, if the constraint is an invariant on
the derivable graphs. The method for enforcing a constraint is by including appropriate
preconditions (which are themselves graph formulae) in the rules, using a technique
worked out recently for sub-classes of concrete constraints in [6].

We first define abstract and concrete rules with application conditions, and their
matching. The following definition extends that in [2].

Definition 15 (abstract and concrete rules). An abstract rule typed over a type graph
TGI = (TG , I,A) with inheritance is given by p = (L l← K r→ R,FL,FR), where
L,K, R are abstract clan-typed graphs, l and r are type-preserving graph morphisms,
FL and FR are abstract graph formulae, and ctp−1

R (A) ⊆ r(NK).
p is called concrete if L,K, R are concrete clan-typed graphs and FL,FR are con-

crete graph formulae.
Concrete rule p′ refines abstract rule p, if L′ ≤ L, K ′ ≤ K, R′ ≤ R and ctp′

R|N ′
R

=
ctpR|N ′

R
, and moreover, F ′

L = flatL′(FL) and F ′
R = flatR′(FR). The set of all concrete

refinements of an abstract rule p is denoted by p̂.

Example 7 (abstract rules). Fig. 9 shows two abstract rules, modelling the insertion of
a new string into an ordered set. InsertFirstStringinserts a string into an empty set (the
emptyness is ensured by the application condition), whereas InsertNextString handles
the case of a non-empty set: an existing object will become the predecessor of the newly
inserted String. Note that, if this existing object already has a successor, application of
the rule will violate the multiplicity constraint in Fig. 5. We will show below (Ex. 8) that
this condition is obtained automatically by translation from the multiplicity constraints.
(Note that Fig. 9 only shows the left and right hand sides; the interface graph can be
deduced from the node identities.)

Fig. 9. Abstract rules for inserting a String into an OrderedSet

Definition 16 (rule matching and application). Let p = (L l← K r→ R,FL,FR) be a
derivation rule, G and H concrete clan-typed graphs, and m : L→G a type-preserving
graph morphism.

– If p is a concrete rule, then m is a match of p in G if



76 G. Taentzer and A. Rensink

• m is a match of the untyped rule 〈L l← K r→ R〉 in the untyped graph G,
• m |=c FL.

Given a match m, a concrete direct derivation G
p,m
=⇒ H exists if there is a span of

type-preserving morphisms G←D→H and a co-match m∗ : R→H of p in H that
give rise to a derivation in the classical theory of (untyped) graph transformations
[5]. The derivation is valid if m∗ |=c FR.

– If p is an abstract rule, then m is a match of p in G if
• m is a match of the untyped rule 〈L l← K r→ R〉 in the untyped graph G;
• tK(x1) = tK(x2) for tK = ctpG◦m◦ l and x1,x2 ∈ NK with r(x1) = r(x2);
• m |=a FL.

Given a match m, an abstract direct derivation G
p,m
=⇒ H exists if there is a span of

type-preserving morphisms G←D→H and a co-match m∗ : R→H of p in H that
give rise to a derivation in the sense of [2]. The derivation is valid if m∗ |=a FR.

The following is the main theorem of [1], extended to the more general application
conditions used in the paper. It can be proved using Theorem 1.

Theorem 4 (equivalence of abstract and concrete derivations). Given
an abstract rule pa = (L ← K → R,FL,FR), concrete clan-
typed graph G,H and a structural match morphism m : L → G
(i.e. a match with respect to the untyped rule 〈L ← K → R〉), the following
statements are equivalent:

1. m is a match of pa in G, yielding a valid abstract direct derivation: G
pa,m=⇒ H .

2. m is a match of the concrete rulepc = (Lc←Kc→Rc,F
c
L,F c

R) inGwithpc ∈ p̂a and

m : Lc →c G type-preserving, yielding a valid concrete direct derivation: G
pc,m=⇒ H .

In the following, we want to use the translation of graph constraints to application
conditions of graph rules as described in [6]. Therefore, we have to restrict the class
of graph formulae we use to the ones defined in [6]. If we restrict our concrete graph
constraints GC = (P,Con) to those with |Con| ≤ 1, they become equivalent to the
positive and negative graph constraints of [6]: the case of |Con| = 1 corresponds to
positive graph constraints, while the case of |Con| = 0 correspond to negative graph
constraints.4 Another difference is that, in [6], the morphisms in Con are allowed to be
arbitrary, but that does not add expressiveness (although it does add compactness) to
those we have defined here, which have injective morphisms only. The following is the
relevant result from [6].

Theorem 5 (from concrete constraints to left application conditions). Given a con-
crete constraint GC and a concrete rule p = 〈L ← K → R〉, there is a left ap-
plication condition accL such that for all direct derivations G

p,m
=⇒ H we have:

m |=c accL ⇔ H |=c GC .

By combining this with Theorems 1 and 4, we can prove the following.

4 The result of [6] has since been extended in [8] to and beyond our graph formulae, namely to
arbitrarily nested formulae as in [13], which means that the results below also hold for arbitrary
formulae.
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Fig. 10. Derived application conditions

Theorem 6 (from abstract constraints to left application conditions). Given an ab-
stract constraint GC a and an abstract rule pa with left hand side La, there is a set S of
concrete application conditions such that for all direct derivations G

pa,m=⇒ H we have:
(∃F ∈ S : m |=c F ) ⇔ H |=a GC a.

Thus, given some abstract graph constraint formula Fa typed over type graph TGI with
inheritance, we can flatten it to a concrete graph formula Fc as described in Section
3. Fc can be considered as simply typed over concrete closure T̂GI and translated to
a concrete left application condition accL that guarantees Fa. Note that accL is also
typed over T̂GI . Unfortunately, there is no straightforward way to translate accL to an
abstract application condition.

Example 8 (additional application constraints for abstract rules). Consider the con-
straints in Figs. 5 and 7, respectively and the abstract rules in Fig. 9. Fig. 10 shows
some of the elements of S derived for this case according to Th. 6.

For rule InsertFirstString, the multiplicity constraints (Fig. 5) do not lead to inter-
esting application conditions, since the left-hand side does not contain an Object; but the
edge inheritance constraints (Fig. 7) induce the two application conditions shown in the
figure. These essentially express that the OrderedSet involved has to be a StringSet.
For rule InsertNextString, the multiplicity constraint on nxt-edges leads to the third
application condition of Fig. 10 (among others). This expresses that the node with iden-
tity 2 in the left hand side of the rule (which has the abstract type Object in the rule
but concrete type String in the condition) may not have an outgoing nxt-edge; see also
Fig. 3.

6 Conclusions

In the literature, a variety of formal integrations of object-orientation and formal specifi-
cation techniques exist. They are considered in the context of precise semantics for UML
as well as for precise meta-modeling. It is the declared aim of the precise UML group
[12] to come up with a precise standard semantics of the whole language UML, and then
to use it for verification purposes. There are various approaches being developed, each
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formalizing certain aspects of UML with the intention of using the resulting precision
for formal reasoning. In [3], the authors are especially concerned with the formalization
of classes and their relations, inheritance and constraints on the basis of description
logics. This work is dedicated entirely to the static part and does not regard the dynamic
behavior of objects. Precise meta-modeling is considered in [14], where MOF and graph
transformation concepts are integrated. While the aim and the basic ideas are similar to
ours, the formalization chosen in [14] is different and not as comprehensive; in particular,
it does not deal with constraints.

In addition to formulating a precise semantics, one has also to consider the process by
which constraints are enforced. In this paper we have shown one way in which this can
be done (by translation to application conditions). We are not aware of other approaches
in the literature.

Summarizing, in this paper we have obtained a further, important step of integrat-
ing graph transformation with object-orientation concepts: now, type inheritance, con-
straints, and graph transformation concepts are integrated in one comprehensive formal
framework. This offers the possibility to check properties for object-oriented software
models. On the meta-model level, the results in our paper can be used to check constraints
for model transformation. Further work is needed to carry over other analysis techniques
to typed graph transformation with inheritance, to come up with a comprehensive visual
and precise framework for object-oriented modeling and meta-modeling.
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Abstract. Modeling the dependencies between provided and required services
within a software component is necessary for several reasons, such as automated
component adaptation and architectural dependency analysis. Parametric contracts
for software components specify such dependencies and were successfully used
for automated protocol adaptation and quality of service prediction. In this paper, a
novel model for parametric contracts based on graph grammars is presented and a
first definition of the compositionality of parametric contracts is given. Compared
to the previously used finite state machine based formalism, the graph grammar
formalism allows a more elegant formulation of parametric contract applications
and considerably simpler implementations.

1 Introduction

Specifications should not be a means by themselves, but should have beneficial applica-
tions (besides of being a specification of something).Applications of software component
specifications and software architecture specifications include automated test case gen-
eration, architectural dependency analysis [18] and component adaptation [14]. In any
of these applications, additional information on a component (besides their interfaces)
is beneficial which, on a first glance, seems to contradict the black-box use of compo-
nents. However, the conflict between the need of additional information and black-box
component (re-)use does not exist, as long as two conditions are fulfilled: Information
on the component (beyond the interfaces) does not (a) have to be understood by human
users, and (b) expose the intellectual property of the component creator. In addition, it
is beneficial, if information on the component can be easily specified or even generated
out of the component’s code.

Parametric contracts [14, 15] support automated component protocol adaptation,
quality of service prediction [16] and architectural dependency analysis by giving addi-
tional information on the inner structure of the component. In more detail, parametric
contracts request so-called service effect specifications for specifying inner-component
dependencies between provided and required services. These dependencies are simple
to model as lists in case of signature-list interfaces (which required services are needed
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c© Springer-Verlag Berlin Heidelberg 2005



Modelling Parametric Contracts and the State Space of Composite Components 81

by a provided service). In case of protocol modelling interfaces things are more compli-
cated, as one needs to specify sets of call sequences (which call sequences are needed
to provide a service). As service effect specifications are an abstraction of a compo-
nent’s implementation’s control-flow graph, it can automatically be extracted out of a
component’s code by control-flow analysis [10].

To make a component model compositional, all properties attached to a component
should be present for a composite component as well (i.e., there is not difference between
a basic and a composite component when neglecting the inner structure) and, in addition,
the properties of a composite component should be derivable from the properties of the
inner component plus the composition structure.

In this paper we discuss the compositionality of parametric contracts, in particular
of parametric contracts used for protocol modeling interfaces. We use graph grammars
to rewrite the graphical representation of a transition function of a finite state machine
(FSM) modelling such sets of call sequences.

The contribution of this paper is twofold: Firstly, we show in detail how parametric
contracts are modelled by a graph grammar. This is a novel contribution, as until now
parametric contracts were described by a state machines and predicates. This directly
leads to using graph grammars to component protocol adaptation. In particular, the graph
grammar model leads to simpler implementations for the practically relevant adaptation
of provides interfaces. Secondly, we show how service effect specifications of parametric
contracts are composed by using graph grammars. This is the most important contribution
with respect to applications, as until now, there was no compositional component model
for components using parametric contracts. It should be emphasised that the contribution
lies in the fruitful application of existing graph grammar formalisms to component based
software engineering, not in the extension of the formalisms themselves.

This paper is organised as follows. In section 2 we review parametric contracts, their
state machine models and give a brief introduction of the graph grammar notion used in
this paper. In section 3 we show in general how graph grammars can be used to rewrite
FSMs by interpreting their transition function as a graph. In section 4 we apply this
idea to the main topic of this paper, namely protocol adaptation by parametric contracts
and component state space composition. In section 5 we conclude by summarising the
achievements of the paper, showing the limitations of our approach and discussing future
work on open questions. Related work is discussed throughout the whole paper where
appropriate.

2 Fundamentals

2.1 The Contractual Use of Components

The essence of design-by-contract[11] can be summarised as: If the client fulfils the
precondition of the supplier, the supplier will fulfil its postcondition.

Much of the confusion about the term "contractual use" of a component comes from
the double meaning of the term "use" of a component. The "use" of a component can
mean either:

The usage of a component during run-time. This is, calling a service of a component.
Therefore it should be evident that this type of contractual component use is nothing
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different as using a method contractually. Thus this case should be called the use of a
component service instead of the use of a component. As the contractual use of methods
is well elaborated in literature [11], we do not consider this case here.
The usage of a component during composition time. This is, placing a component in
a new reuse-context, like it happens when architecting systems, or reconfiguring existing
systems (e.g., updating the component).

Depending on the above case, contracts play different roles. The usage of components
at composition time is the actual important case when discussing the contractual use of
components. Consider a component C acting as supplier, and the environment acting as
client. The component offers services to the environment (i.e., the components connected
to C’s provides interface(s)). According to the above discussion of contracts, these
offered services are the postcondition of the component, because this is, what the client
can expect from a working component. According to Meyer’s above description of
contracts, the precondition specifies what the component expects from its environment
to be provided in order to enable C to offer its services (as stated in its postcondition).
Hence, the precondition of a component is stated in its requires interfaces.

Analogous to the above single sentence formulation of a contract, we can state:

If the user of a component fulfils the components’ requires interface (offers
the right environment) the component will offer its services as described in the
provides interface.

Checking the satisfaction of a requires interface includes checking for each required
service whether its service contract is a a sub-contract of the service contracts of the
corresponding provided service. Subcontracts are elobaroated in [12–p. 573].

2.2 Parametric Contracts

For a component developer it is hard to foresee all possible reuse contexts of a component
in advance (i.e., during design-time). One of the severe consequences for component
oriented programming is that one cannot provide the component with all the config-
uration possibilities which will be required for making the component fit into future
reuse contexts. Coming back to our discussion about component contracts, this means,
that in practice one single pre- and postcondition of a component will not be sufficient.
Consider the following two scenarios:

1. the precondition of a component is not satisfied by a specific environment while the
component itself would be able to provide a meaningful subset of its functionality.

2. a weaker postcondition of a component is sufficient in a specific reuse context (i.e.,
not the full functionality of a component will be used). Due to that, the component
will itself require less functionality at its requires interface(s), i.e., will be satisfied
by a weaker precondition.

As a consequence, we do not need statically fixed pre- and postconditions, but para-
metric contracts to be evaluated during deployment-time. In the first case a parametric
contract computes the postcondition which is computed in dependency of the strongest
precondition guaranteed by a specific reuse context (hence the postcondition is param-
eterised by the precondition). In the second case the parametric contract computes the
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precondition in dependency of the post-condition (which acts as a parameter of the pre-
condition). Due to this parametric mutual dependencies between the pre-condiction and
the post-condition these contracts are called "parametric" contracts. For components
a parametric contracts means, that provides- and requires-interfaces are not fixed. A
provides interface is computed in dependency of the actual functionality a component
receives at its requires interface, and a requires interface is computed in dependency of
the functionality actually requested from a component in a specific reuse context. Hence,
opposed to classical contracts, one can say:

Parametric contracts link the provides- and requires-interface(s) of the same
component. They have a range of possible results (i.e., new interfaces).

Interoperability is a special case now: if a component is interoperable with its environ-
ment, its provides interface will not change. If the interoperability check fails, a new
provides interface will be computed.

Mathematically, parametric contracts are modelled by a function p mapping a pro-
vides interface P to the minimal requires interface R = p(P ) = RC specifying the
needs of P . Hence p is a function of the set ProvC of all possible provides interfaces
of C to the set ReqC of all possible requires interfaces of C. A possible provides in-
terface is any interface offering a subset of the functionality implemented in C, the set
of all possible requires interfaces is the image of ProvC under p. Note that p not nec-
essarily is an injective function: several different provides interfaces may be mapped
to the same requires interface. Consequently, the inverse mapping, associates to each
requires interface of R ∈ ReqC a set of supported provides interfaces. To yield a single
provides interface, we use the “maximum" element of this set. Formally, this element is
the smallest upper bound of the set p−1(R). This smallest upper bound is the join of the
elements of p−1(R) which exists because if provides interfaces P1 and P2 are elements
of p−1(R) each of their elements (i.e., services, service call sequences, services with
QoS annotations) is supported, consequently, the interface describing the set of all these
elements is also itself element of p−1(R) (P1, P2 ∈ p−1(R) ⇒ P1∪P2 ∈ p−1(R)). For
later use, we define the shorthand inv-p : ReqC → ProvC as inv-p(R) :=

⋃
E∈p−1(R) E.

(Note that we use the more intuitive set-oriented notion of ∪ for the join-operator which
is commonly referred to as � in literature on lattices, etc.)

Like for a classical contracts, the actual parametric contract specification depends
on the actual interface model[19] and should be statically computable. In any case,
there’s no need for the software developer to foresee possible reuse contexts. Only the
specification of a bidirectional mapping between provides- and requires-interfaces is
necessary.

2.3 Finite State Machines and Component Protocols

The protocol of the services offered by a component is defined as (a subset of) the
set of valid call sequences. A valid call sequence is a call sequence which is actually
supported by the component. For example for a file open-read-close is a valid call
sequence, while read-open is not. The specified set of valid call sequences is called
the provides-protocol.
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Analogously, the protocol of the services required by a component is a set of call
sequences by which the component calls external methods. This set of sequences of calls
to external component services is called the requires-protocol.

The provides- and the requires-protocols are considered as sets of sequences. State
machines are well-known notations for protocol specification [2, 9, 13, 20]. The benefits
of a state machine specification of protocols are the representation of protocols in a
compact and precise manner and the possibility of an efficient automatic formal analysis
of protocols.

Definition 1 (Finite State Machine). A finite state machine (FSM) is a system A =
(I, Z, F, z0 , δ) where I is an input alphabet, Z is a finite set of states, F ⊆ Z is a set of
final states, z0 ∈ Z is a start state, and δ : Z × I → Z is a total transition function.

Not that every partial transition function can be extended to a total one by adding a
state ⊥ and assigning ⊥ whenever the partial function yields undefied or the state in
consideration is ⊥.

By P-FSM we denote the FSM specifying the provides protocol of a component,
while the component-requires-FSM (CR-FSM) gives the requires protocol. The P-FSMs
input alphabet is the set of methods provides by the component. In the reverse, the input
alphabet of the the CR-FSM is the set of (external) methods required by the component.
Since our implementation utilises a state-machine based approach we identify state-
machines and protocols.

When modelling call sequences, we model for each state which methods are callable
in this state. In many cases, a method call changes the state of the state machine, i.e.,
some other methods are callable after the call, while others, callable in the old state, are
not callable in the new state. An example of the P-FSM of an exemplary video-stream
component is shown in figure 1(a). The protocol described by this FSM represents the
maximum functionality which can be offered by the video-stream. Note that the video-
stream offers to manipulate the sound and the picture while playing and while pausing
the video.

2.4 Graph Grammars

Graph transformation systems and graph grammars generalize string rewriting systems
and Chomsky grammars, respectively: The objects are graphs, the rules are graph replace-
ment rules, and the application of a rule to a graph yields a graph. Graph transformation
systems and graph grammars are well-studied and applied to several areas of computer
science (see, e.g. [17, 4, 5]). In the following, we provide the basic notions on graphs
and graph grammars needed in the paper. Details and pointers to the literature can be
found e.g. in [6, 8].

We consider directed, edge-labelled graphs with a finite set of nodes and edges.
Source and target nodes of an edge are given by the source and target functions; the
labelling of an edge is given by the labelling function.

Definition 2 (Graph). A graph over an alphabet C is a system G = (V, E, s, t, l)
consisting of two finite sets V and E of nodes (or vertices) and edges, two source and
target functions s, t : E → V, and a labelling function l : E → C. The components of
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G are denoted by VG, EG, sG, tG, and lG, respectively. The set of all graphs is over C
is denoted by GC .

A graph morphism relates graphs. A graph morphism g : G → H between graphs
G and H consists of two functions gV : VG → VH and gE : EG → EH that preserve
sources, targets and labels, that is, sH◦gE = gV◦sG, tH◦gE = gV◦tG, and lH◦g = lG.
A morphism g is an inclusion if gV and gE are inclusions and an isomorphism if gV and
gE are injective and surjective. In the latter case, G and H are isomorphic denoted by
G ∼= H . A graph replacement rule consists of two graphs, the left-hand side and right-
hand side of the rule. The left- and right-hand side are related by two inclusions from a
common graph into the left- and the right-hand side.

Definition 3 (Rule). A rule r = 〈L ← K → R〉 consists of two graphs L and R, the
left-hand side and the right-hand side of r, and two inclusions K → L and K → R
from a common graph K. A rule r is an edge replacement rule if L is a graph with two
nodes and a connecting edge and K is obtained from L by removing the connecting
edge. The application of a rule r to a graph G amounts to the following steps:

(1) Find a graph morphism g : L → G and check the following two conditions.
Dangling condition: No edge in G− g(L) is incident to a node in g(L−K).
Identification condition: For all distinct items x, y ∈ L, g(x) = g(y) only if
x, y ∈ K. (This condition is understood to hold separately for nodes and edges.)

(2) Remove g(L −K) from G, yielding a graph D = G− g(L −K).
(3) Add R −K to tD, yielding a graph H = D + (R −K).

An example of the application of a rule to a graph is given in figure 2.
The graph G directly derives H via r and g, denoted by G ⇒r,g H or G ⇒ H . A

sequence of direct derivations G = G0 ⇒r1,g1 . . .⇒rn,gn
Gn

∼= H via r1, . . . rn ∈ R
is a derivation from G to H (of length n), denoted by G ⇒∗

R H . If the derivation is of
length at least one, we also write G ⇒+

R H .
A graph grammar consists of an alphabet, a nonterminal alphabet, a set of rules, and

a start graph. The generated language consists of all graphs without nonterminal labels
derivable from the start graph via the rules of the grammar.

Definition 4 (Graph Grammar). A graph grammar is a system G = 〈C, N,R, S〉,
where C and N ⊆ C are alphabets,R is a finite set of rules, and S is a start graph. IfR
is a set of edge replacement rules, G is an edge replacement graph grammar. The graph
language L(G) generated by G consists of all graphs without nonterminal labels which
can be derived from S by applying the rules ofR: L(G) = {G ∈ GC−N | S ⇒∗

R G}.
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3 Refining Finite State Machines by Graph Grammars

3.1 Finite State Machines as Graphs

Usually, a finite state machine is drawn as a graph with additional information concerning
the start and the final states. It can be represented as a graph by adding two nodes begin
and end and edges with label Start and Final, respectively, from begin to the start state
and the final states to end.

Let A = (I, Z, F, z0 , δ) be a finite state machine. Then G(A) = (V, E, s, t, l)
denotes the graph over the alphabet C = I ∪ {Start, Final} with node set V = Z ∪
{begin, end}, edge set E = Z × I ∪ {ez0} ∪ {ef | f ∈ F}, and source, target, and
labelling functions s, t, and l with

(1) s(z, i) = z, t(z, i) = δ(z, i), and l(z, i) = i for all z ∈ Z and i ∈ I,
(2) l(ez0) = Start, begin = s(ez0), and t(ez0) = z0 ,
(3) l(ef ) = Final, f = s(ef ), and t(ef ) = end for all f ∈ F.

For convenience, start and final states are depicted in the classical way, that is, by an
arrow pointing to the start state and a black dot inside each final state. The nodes begin
and end are not drawn. An example of the representation of a FSM as a graph using the
drawing conventions is given in figure 1(a).

3.2 Substuitution of Transitions in Finite State Machines

Substitutions of transitions in a finite state machine by finite state machines will be
implemented by edge replacement graph grammars.

Example 1 (Substitution of Transitions by FSMs). Consider the FSM in figure 1(a). The
transition b from the start state to the final state shall be replaced by the FSM given in
figure 1(b).

The result of the substitution is shown in figure 1(c). The ε-transitions are needed
to maintain the structure of the original finite state machine. Without these ε-transitions

(a) Original FSM (b) FSM for
substitution

(c) FSM resulting from the substitution

Fig. 1. Substitution of transitions by FSMs
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(by just linking the transitions connected to the start state with the source of transition b
and the ones connected to the final state with the destination of transition b) it would be
possible to go from the final state back to the start state. This contradicts the structure
of the original FSM.

The implementation of the substitution of transitions by FSMs by an edge replace-
ment graph grammar is done as follows: The FSMs are transformed into graphs and a
set of substituting rules is defined.

Let A be a FSM, I ′ ⊆ I a subset of input symbols selected for substitution, and
sub: I ′ → A a mapping assigning a FSM of the set of FSMs A to each selected input
symbol. For i ∈ I ′, let Ai = sub(i) denote the FSM associated with the input symbol
i. Then the edge replacement graph grammar G = 〈C, N,R, S〉 associated with A and
sub is as follows: S = G(A) is the start graph, N = I ′ is the set of input symbols
selected for substitution, and R = {ri | i ∈ I ′} is a set of rules where, for i ∈ I ′,
ri = 〈Li ← Ki → Ri〉 is constructed as follows. Li is the handle induced by i, that is
the graph ({v1, v2}, {e}, s, t, l) with s(e) = v1, t(e) = v2, and l(e) = i, Ki is obtained
from Li by removing the edge e, and Ri is the graph Gε(Ai) obtained form G(Ai) by
replacing the symbols Start and Final by the symbol ε. The label alphabet C consists
of all symbols occurring in the start graph or some rules.

Example 2 (Application of Rules). The rule for the substitution in example in figure 1(b)
is shown at the top of figure 2. The application of the rule to the graph of the FSM in
figure 1(a) results in the direct derivation G ⇒ H shown in figure 2.

Fig. 2. Application of a rule

There is a close relationship between the iterated application of a substitution and the
application of rules induced by the substitution [6]. We use the relationship for defining
the iterated application of a substitution of transitions by FSMs.

Definition 5 (Substitution of Transitions by FSMs). Let A be a FSM, sub a substitu-
tion, and G = 〈C, N,R, G(A)〉 the associated edge replacement graph grammar. Then
the iterated application of sub to A is the graph language L(G) = {H ∈ GC−N |
G(A) ⇒∗

R H}.
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The edge replacement graph grammar starts in the graph of the FSM and replaces
nonterminal labeled edges as long as possible. If the edge replacement graph grammar
is non-recursive3, then there are no infinite derivations from the start graph. Moreover,
the rewrite relation ⇒R satisfies the diamond property, that is for every pair of direct
derivation G ⇒R H1 and G ⇒R H2 with H1 �∼= H2 for some M there are direct
derivations H1 ⇒R M and H2 ⇒R M .

Fact 1. Let G be a non-recursive edge replacement graph grammar associated with a
FSM and a substitution. Then L(G) has exactly one element.

If the edge replacement graph grammar is recursive, then there is a symbol i with
derivation G ⇒+ H from the handle of i to a graph containing the symbol i. Since
every symbol, in particular i, occurs in the start graph, there is an infinite derivation
beginning with the start graph. Since there is exactly one rule for each nonterminal
symbol, there is no chance to derive a terminal graph.

Fact 2. Let G be a recursive edge replacement graph grammar associated with a FSM
and a substitution. Then L(G) is empty.

For every non-recursive edge replacement graph grammarG, we can find a linear ordering
on the nonterminals such that every rule is strictly order-preserving, that is the symbol
on the left-hand side is less that the nonterminal symbols on the right-hand side. Vice
versa, if we can find such an ordering, then the grammar is non-recursive. Thus, we
obtain the following.

Lemma 1. It is decidable whether an edge replacement graph grammar is recursive.

Proof. Similar to the proof for left-recursive context-free string grammars in [1]. If the
edge replacement grammar is a non-recursive, then there is a linear order < on the
nonterminal symbols such that for every rule, the nonterminal symbol on the left-hand
side is less than all nonterminal symbols on the right-hand side: Let � be the relation
A � B if and only if G ⇒∗ H where G is a handle with label A and H is a graph
containing the label B. By definition of recursion, � is a partial order. (Transitivity is
easy to show.) � can be extended to a linear order < with the desired property. If < is a
linear order on the nonterminal symbols such that for every rule, the nonterminal symbol
in the left-hand side is greater than all nonterminal symbols in the right-hand side, then
there does not exist a nonterminal symbol A with derivation G ⇒+ H from a handle
G with label A to a graph H containing the nonterminal symbol A, i.e. the grammar is
non-recursive.

If one considers a transition as function call, this problem can be seen as recursion
of a function. In the context of function calls and parametric contracts it has been solved
in [14].

3 A symbol i in an edge replacement graph grammar is recursive if there exists a derivation
G ⇒+

R H from the handle of i to a graph containing the symbol i. An edge replacement edge
replacement graph grammar with at least one recursive symbol is recursive.
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4 Applications to Protocol Adaptation with Parametric Contracts
and Component Composition

Parametric contracts enable the deployer of a software component to determine the
services a software component can provide in its current environment. Therefore, the re-
quires interface is computed out of the components provides interfaces and
service-effect-specifications. The result is intersected with the interfaces provided by
the component’s environment yielding an interface that contains only the services (of
the component’s requires interface) the environment can offer. This reduced requires
interface is transformed into a reduced provides interface that includes only the services
the component can provide in the current context.

It is also possible to compute the requirements of a component depending on the
services needed by its environment. Therefore, the provides interfaces of a component
are intersected with the (joined) interfaces required by its environment yielding a reduced
provides interface that contains only the services that are needed by the environment.
The result and the service-effect-specifications of the component are used to determine
a reduced requires interface that asks only the services from the environment that are
currently needed.

4.1 Computation of Requires Interfaces

The CR-FSM of a component can be derived from its P-FSM and its service-effect-
specifications. Therefore, each transition in the P-FSM representing a service call is
substituted by the associated service-effect-specification. This results in a new protocol
consisting of the external services used by the component.

More formally speaking we have a P-FSM AP and a set of service-effect-specifica-
tions A, all given as finite state machines. Additionally, the function v : IP → A
associates every input symbol of AP with a service-effect-specification in A.

Informally, we proceed as follows. Firstly, a graph grammar G is defined substituting
each transition with the associated service-effect-specification. (The substitution without
graph grammars is described in [14, 15].) The definition of G is similar to the one given
in section 3 except that no ε-transitions are used for integrating the FSM into its new
context, but special calling and return transitions. The requires protocol is a projection of
this protocol where the calling and return transitions will be replaced by ε-symbols. But
for the moment, they are needed for the construction of the adapted provides interface as
described in section 4.2. Secondly, we apply this graph-grammar G to the provides proto-
col. The result of this application forms the requires protocol. Hence, the "algorithm" of
computing the requires protocol is simply the application of G to the provides protocol.
This is the minimal requires interface, as no substitution performed by G is superfluous.
The time-complexity of this approach is bounded by the number of transitions of the
P-FSM.

More formally, let G be a graph grammar according to section 3 with the origi-
nal FSM Ap, the FSM set for substitution A, and the mapping function v. Instead of
defining Es and Ef for the right-hand side of rule ri (the rule associated with input
symbol i in IP ) as above, set Es = {e|s(e) = n1, lV

′(t(e)) = Start, lE (e) = i′}
and Ef = {e|lV ′(sRi

(e)) = Final, t(e) = n2, lE (e) = return}, where i′, return /∈
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play stop

volume_up volume_down brightness_up 
brightness_down contrast_up contrast_down 
speed_up speed_down

pauseplay

brightness_up brightness_down contrast_up contrast_down 
speed_up speed_down save_to_file

1 2 3

4

(a) Provides Protocol

  VideoPlayer::play

SoundPlayer::play

(b) Seff play

  VideoPlayer::stop

SoundPlayer::stop

(c) Seff stop

Fig. 3. Substitution of transitions by FSMs

rplay:

play’
VideoPlayer::play

SoundPlayer::play

returnplay

RKL
1 2 1 2 1 2

rstop:

stop’
VideoPlayer::stop

SoundPlayer::stop

returnstop

L K R
1 2 1 2 1 2

Fig. 4. Rules for substitution

IP

⋃
Ai∈Ai

Ii are new edge labels and lV
′ is the node label function of GAi . Es contains

exactly one edge from the source of the substituted edge i to the node associated with
the start state of Ai. Instead of labelling it with ε as above, a new edge label i′ is defined
marking the transition as a service call. Ef consist of edges from all nodes corresponding
to the final states of Ai to the destination the substituted edge. The ε label used in section
3 is replaced by a general return label tagging the edge as a return-transition from a
called service.

As an example of the approach described above, consider the provides automaton of
a video-stream component shown in figure 3(a). The video-stream component maps its
provided services on a video-player and sound-player component. The service-effect-
specifications for play and stop are given in figures 3(b) and 3(c).

Now, we create a graph grammar G that substitutes the transitions of the P-FSM as
described above. Therefore, the start graph S of G is set to the graph representation of
the provides automaton AP shown in figure 3(a) and the non terminal alphabet NE is
set to the input alphabet IP = {play, stop, ...} of AP . The total label alphabet
contains IP , the input symbols of the service-effect-specifications, and a set of new
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S =

...

play stop

⇒rstop
play

...

stop’
VideoPlayer::stop

SoundPlayer::stop

return

⇒rplay
play’

VideoPlayer::play

SoundPlayer::play
...

return stop’
VideoPlayer::stop

SoundPlayer::stop

return

⇒ . . .
Fig. 5. Derivation of the CR-FSM

input symbols I ′
P = {return, play’, stop’ ...}. Last but not least, the rules

are created as shown in figure 4. For rule rplay the play-transition is replaced by the
service-effect-specification of play. The transition play’ on the right-hand side of the
rule indicates that the service called play is executed. After this transition follows the
start-state of the service-effect-specification of play, the calls to the video player and
sound player components and the final-state which is connected to the target of the
play-transition with a return-transition. The structure of rstop and all other rules is
analogous.

The computation of the requires protocol from the start-graph of G amounts in the
derivation shown in figure 5. First, rule rstop is applied on start-graph S, the graph
representation of the provides automaton (it is only partially depicted) and the transition
stop is substituted by the corresponding service-effect-specification. Next, rule rplay is
applied. This process is continued until all provided services are replaced by its service-
effect-specifications.

The result of the application of G on S is a FSM that can be easily transformed to
the requires protocol of the video stream component. Therefore, the symbols introduced
above (I ′

P = {return, play’, stop’ ...}) are substituted by ε. The resulting
FSM describes the service calls made by the component to its environment. Transform-
ing this ε-FSM into a deterministic FSM and minimising the result leads to a good
representation of the call sequences used by the component. For parametric contracts,
the next step is to intersect the result with the P-FSMs of the component’s environment
as described in the beginning of this section.

4.2 Computation of Provides Interfaces

We are not only interested in the services required by a component depending on its
environment, but also in the services that can be provided in the current environment.
Therefore, we need to determine the P-FSM of the component depending on the protocols
and services offered by its environment. This is done by intersecting the CR-FSM of
the component with P-FSMs of its environment. The result is a CR-FSM containing
only those services that are required by the component and can be provided by its
environment. This reduced CR-FSM is used to determine a reduced P-FSM containing
only those call sequences that can by provided by the component in the current context.

Therefore, we need to reconstruct a graph that has a structure similar to the result of
our graph grammarG given in section 4.1. We can use this graph to apply the inverse rules
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of G and derive the reduced P-FSM of the component. Finally, we need to intersect the
result with the original P-FSM to clean up all service-effect-specifications that could not
be transformed back to a single service call. This is required since during the intersection
with the environment some states and transitions of the CR-FSM are removed and thus,
some service-effect-specifications are incomplete and the inverse rules of G cannot be
applied.

For the first step we define an asymmetric intersection between two finite state ma-
chines:

Definition 1 (Asymmetric Intersection)
Let A = (IA, ZA, FA, z0A, δA) and B = (IB , ZB , FB , z0B , δB) be two finite state

machines with IA ⊆ IB , and I′
B ⊆ IB − IA. The asymmetric intersection of A and

B is given by A×B = (IB , ZA × ZB , F, (z0A, z0B), δA×B). Where (z1, z2) ∈ F, if

z1 ∈ FA and z2 ∈ FB . The state transition function δA×B is given by

δA×B((z1, z2), i) =

⎧⎪⎨
⎪⎩

(δA(z1, i), δB(z2, i)), if i ∈ IA

(z1, δB(z2, i)), if i ∈ I′
B

undefined, otherwise

The asymmetric intersection creates a new FSM whose accepted language L(A×B) is
a subset of L(B) but (usually) not of L(A). One can consider it as a finite state machine
accepting the common language of A and B while ignoring all input symbols in I ′

B

for automaton A. Note, if I ′
B is the empty set, the asymmetric intersection matches the

regular FSM intersection.
Let GReq be the result of the application of G, G′

Req the result of the intersection,
and AReq and A′

Req the corresponding FSMs. Then, set A = A′
Req, B = AReq and

I ′
B to the symbols newly introduced by the construction of G (for example return,
play’ and stop’ for the video-stream component). Then the result of the asymmetric
intersection is structural similar to the result of the application of G, but does contain
only the service calls that are supported by the environment. So, we can use the inverse
graph grammar G−1 of G for the construction of the reduced P-FSM.

The inverse graph grammar G−1 of G is constructed by inverting all rules of G. The
inverse rule r−1 of r is given by L−1 = R, K−1 = K, and R−1 = L. So, only the
left-hand and right-hand side of the rules are exchanged.

The application of G−1 on the result of the asymmetric intersection is a graph whose
complete service-effect-specifications have been substituted by the corresponding ser-
vice calls and whose incomplete ones still exist. Hence, the final step is to clean up the
result by intersecting it with the original P-FSM. This yields a reduced P-FSM containing
only the call sequences that can be provided by the component in its current context.

The resulting P-FSM is maximal, as all provided service sequences are included.
This is because all possible substitutions are performed by G−1 which means that an
implemented services is available in all states where its requires call sequences (i.e.,
the left-hand side of the rule in G−1 corresponding to the service) are present in the
CR-FSM.

The time-complexity is bounded by the number of substitutions to be performed
which is approximately the number of transitions of the CR-FSM divided the average
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number of edges ("transitions") of the left-hand sides of the rules of G−1. (This is in
principle the same time-complexity as the computation of the requires-protocol, however,
in the latter case the number of edges in the left-hand sides of the rules in G is is one,
while the number of edges in the left-hand sides of the rules in G−1 is higher than one,
as the left-hand sides in G−1 are service effect automata.

4.3 Compositional State Spaces

As mentioned, service effect automata are an abstraction of a component’s internal
state space. As transitions model calls to external services, all internal computations in-
between two calls of an external service, are modelled by a single state of the service effect
automaton. As service effect automata are part of our component model and component
models should be compositional, in the following we will apply the above described
mechanism of substituting a transition of a FSM by another FSM to the compositionality
of components with service effect automata. Compositionality relates to a composition
operator O taking two or more components and compsiting it to a new (composed)
component. We consider as composition operator the use-relationship. We denote a
component using others as C1 and set set of components C2 . . . Cn directly connected
to its requires interface(s) as C. Hence, O(C1, C) =: Cc denotes the composition of
C1 . . . Cn. As this composition is again a component, it can be itself a parameter to
the composition operator which if one wishes to include components indirectly used
by C1 in the composition. As Cc offers the same services as C1 does, we are now
interested in the service effect automata of Cc for these services. Formally speaking
we have a service effect automaton AP of a service s of component C1 and a set of
service-effect-specificationsA, all describing the bahaviour of services implemented by
components C. We are now interested in the service effect automaton of service s of the
composed component Cc. Like in the other applications of edge substitution, the function
v : IP → A associates every input symbol of AP with a service-effect-specification in
A. Now we proceed like on the above construction of requires interfaces (section 4.1)
with the only difference that AP denotes a service effect automaton (and not a provides
protocol) and the result of the substitution is the service effect automaton of service s
of component Cc. For computing the requires protocol of component Cc, we use the
provides protocol of Cc (which is per definition identical to the provides protocol of C1)
and all service effect automata of Cc (constructed as described above) and proceed as
shown in section 4.1.

Note that the here presented approach to compositionality is not restricted to service
effect automata. Muchmore, any state model with a partial function from transitions to
a set of state models to be substituted can be composed by the approach described.

5 Conclusion and Future Work

We presented three applications of a graph grammar approach to finite state machine
rewriting, namely (a) computation of requires protocols in dependency of provides pro-
tocols given invariant service effect automata, (b) the inverse: computation of provides
protocols in dependency of requires protocols given invariant service effect automata
and (c) the composition of service effect automata of components connected by a direct
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use-relationship. These computations form the base for various applications in com-
ponent based software engineering, such as automated component adaptation [14] and
analyses of component based architectures [18]. The main benefits of using edge re-
placenent graph grammars are (a) a unified formal base of the above computations, (b)
an important theory comparable with the theory on context-free string grammars [6], and
(c) its simplicity (compared to the existing state machine based approach [14, 15]). In
the future, we plan to explore the application of using hierarchical graph transformation
[3] to model recursively inserted service effect automata.
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Abstract. The build architecture of legacy C/C++ software systems, groups pro-
gram files in directories to represent logical components. The interfaces of these
components are loosely defined by a set of header files that are typically grouped
in one common include directory. As legacy systems evolve, these interfaces de-
cay, which contribute to an increase in the build time and the number of conflict
in parallel developments. This paper presents an empirical study of the build ar-
chitecture of large commercial software systems, introduces a restructuring ap-
proach, based on Reflexion models and automatic clustering, and reports on a
case study using VIM open source editor.

1 Introduction

In large software development, it is a common practice to organize programs into com-
ponents (or sub-systems), which group a number of related files. Components can be
identified by a simple naming convention, a directory, or using configuration items in
more sophisticated configuration management tools. Each component exposes its in-
terface to other components through a number of header files. This grouping of files
and components, and their logical and syntactic inter-dependencies, constitute the build
architecture of a system. The build architecture provides division of responsibility and
ownership among teams as it facilitates the development of new features [1].

To ensure the stability of the software [2], as program files are changed, these and
other files dependent on them need to be recompiled to create a new version of the
software. As software systems evolve, the number of files, the number of components,
and the dependencies among them grow. The result is a decaying build architecture,
where the original objectives may no longer be valid, interfaces lose their integrity, and
compilation times increase rapidly.

The solution, can broadly be stated as a (semi-)automatic approach to improving the
build architecture of C/C++ software systems. More succinctly, a solution that partitions
a software system into components with the following goals.

1. Components must have clean interfaces, where changes to one component do not
require unnecessary recompilations of other components. This contributes to faster
build as well as easier migration to parallel code management environment such as
Rational ClearCase.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 96–110, 2005.
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2. Components must follow a reference architectural pattern reflecting an architecture
discovered from the code [3]. This can contribute to a controlled evolution of the
architecture in light of future growth.

To achieve the first goal, we remove redundancies (i.e., program entities or units
that are declared but not used in the preprocessed files) and false dependencies (i.e.,
unnecessary program entities included from header files) [4]. As for the second goal,
we combine the architectural repair [5] and the reflexion model [6].

To ease the discussion, we use VIM, an open source editor as our case study. First,
VIM is representative of small to average size components in commercial software
systems that we have studied. Second, VIM is continually evolving and growing (e.g.,
+5% from version 6.1 to 6.2 [7]). Third, availability of existing studies on the repair of
VIM architecture enables us to compare our approach to others. Though VIM is written
in C, our approach can be applied to C++ programs. Elsewhere [8], we reported the
application of our tool on a large C++ component of a commercial software product,
which is the basis of the motivation in Section 2.

The rest of the paper is structured as follows. Section 2 presents motivations behind
the stated problems by reporting on our study of the growth of commercial software
systems. Section 3 outlines our approach. Section 4 reports on the results of a case
study (e.g., VIM) and its experimental results. Section 5 evaluates the componentization
process and the case study. Section 6 summarizes related work in architectural discovery
and repair as well as some VIM case studies. Section 7 concludes the findings.

2 Motivation

The curiosity arises from a study of a number of commercial software systems and their
build architecture. These systems are implemented using C/C++. The number of pro-
gram source files vary from several hundred to several thousands, which are organized
into components. On average each component has 30 to 50 files and is owned by a de-
velopment manager. The development model resembles synch and stabilize [2], where
the programs are compiled and linked on a daily basis.

C1
C3C2 include

System

CCC
CCC

hhhh

C11 C13C12

C CCC hh

b.

C1 C3C2 include…

System

CC
C

CC
C

C
CC

hhhhh

uses
a.

C

Fig. 1. The build architectures of a software before (a) and after (b) the componentization

Program files are organized in directories, each of which represent a component. All
header files are placed in a separate include directory (Figure 1a). Initially, such a
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layout with proper protocols could sustain changes due to the addition of new features or
the repairs of existing defects. However, as the software evolved, the interdependencies
increased, which made manual protocols ineffective. Modern languages, such as Java,
provide other mechanisms (e.g., packages) to organize files and components, as well as
controlling access among components. However, such mechanisms are absent in legacy
C/C++ software systems and must be created manually.

While control is a prime reason for repairing the architecture of legacy software,
the compilation time is also pressing. In particular, our study revealed that on average
between 80 to 90% of extra program entities (i.e. units such as, function, data, and type
declarations) are included through unused header files. On average, each file included
60% of all header files multiple times. In an average size component, 172KLOC or 2.8%
of entire programs, the average number of header files included by program files was
543 (directly and through transitive inclusion). The average size of program files was
37KB, whereas the average size of preprocessed file was 1.96 MB. While the compiler
will discard unused entities, the preprocessor and the parser are penalized for opening,
reading through , and closing the files. Even in case of conditional compilation, while
the entire file is discarded, all lines must be read to determine the end of conditional
guard. Such rate of dependency can significantly slow the compilation process in a
software with thousands of program files.

Another reason for the repair reflects the changing needs of the development team.
In our example, the number of files in the system has been growing steadily for the past
four years, with jumps near major new releases. Similarly, the number of actual depen-
dencies have grown as well as the average number of header files included by program
files. Figure 2 shows the growth of the number of program entities (broken down into
functions, variables and types), source files, included header files, and component de-
pendencies for several major releases of the software.

To improve productivity, teams need to work in parallel. This can be accomplished
if components are smaller and their interfaces minimized. Each component needs to
know only the interface of the components that it uses and parallel development can
proceed. When the interface of a component changes, all other components that use it
must update their definitions. In our example, any time the interface of a component
changes, the components that use it must synchronize (recompile, re-test). As com-
ponents become larger and their interfaces degrade, the number of synchronizations
increases rapidly, which prevents parallel development.

Our objective is to generate component hierarchies (Figure 1b) by leveraging hidden
structures in the program files. In other words, clustering files according to some cri-
teria and implement these clusters using directory hierarchies to control the increasing
complexity. The main constraint here is to maintain the semantics of the programs: we
can only move program entities between files, create new files and directories, or move
files between directories. Figure 1 depicts a sample build architecture before and after
the proposed improvement. For practical purposes, the process must be semi-automatic:
it accepts as input a hypothesis about the layout of components and connectors (i.e., a
reference architecture) and leverages automatic clustering to satisfy it.
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Fig. 2. The growth of an industrial software

3 Componentization Process

The componentization process described in this section relies on data extracted from
the programs and an initial architectural pattern. The former is automatically generated,
while the latter is the input from the developers providing a high level build architecture.
If there is no overall build architecture, we can use automatic clustering to propose
possible build architectures. The componentization process involves three steps, where
at each step mechanisms are provided for manual intervention.

1. Form an initial hypothesis: H =< D,A,M > where
– D is the program dependency graph, which captures the dependencies among

program units, e.g. functions, variables, and types. This graph is automatically
constructed from the program source [4]. It contains all possible dependencies
among program units and provides an invariant logical view of the program
that must not change by restructuring.

– A is a high-level architecture, which captures the structure of the program. This
is a graph where nodes are high-level clusters (or components) and the edges
are inter-dependencies among them. If there are no high-level architectures, we
use the information loss minimizing clustering algorithm [3] on the program
dependency graph D to create an initial architecture.

– M is a one-to-many mapping, which maps nodes of D to a node in A. This
mapping can be provided by the developers or an initial mapping can be ob-
tained from the clustering algorithm (as specified in the creation of A above).
M may not cover all nodes in D.
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2. The dependency graph D is invariant, while the architecture description A and
its mapping M can vary. Using the Reflexion model [6] we identify the outliers
between D and A. These are the divergences (e.g. dependencies that exist between
nodes in graph D but not in corresponding nodes in A) or absences (e.g., dependen-
cies that are in D but not in A). If the number of outliers exceeds a pre-determined
threshold, we make manual adjustments based on developers’ feedbacks, naming
conventions, or available documentation.

– Modify the architecture A by adding a new cluster or merging two clusters.
– Modify the mapping M by grouping nodes in D into clusters in A.

Repeat step 2.
3. Each cluster in A represents a component in our new build architecture.

To demonstrate the operation of the componentization process, we use VIM 6.2
as a case study. VIM is a widely used open source editor whose size is comparable
to components of average or medium size in commercial software systems that we
have studies. Furthermore, earlier version of VIM was studied by Tran et al [5] for the
purpose of architectural repair. Elsewhere, we used VIM to investigate the reduction of
build time by removing false dependencies among program header files [8].

Constructing program dependency graphs. The program dependency graph was ob-
tained as a by-product of our header restructuring algorithm [4]. There are two types
of dependency graphs. A file-level dependency graph (FDG) G =< V,E > is a graph
where its vertices V represent files (program files or header files) and its edges represent
inclusion directions between files (i.e., #include directives). A snippet of this graph
for VIM 6.2 is shown below.

buffer.c <- vim.h
vim.h <- globals.h
...

A program unit dependency graph (PUDG) G =< V,E > contains more detailed
information about the program. Its vertices are program units (e.g. entities with one
definition and multiple declarations) and its edges are syntax dependencies among the
program units. A snippet of the PUDG for VIM 6.2 is shown below.

func:AppendCharToRedobuff <- func:add char buff
func:AppendCharToRedobuff <- var:block redo
...

After restructuring VIM 6.2 header files, 956 header files (numbered by a natural
number) were generated, which were included by 46 compilation units. This results in
an updated FDG with 1002 nodes and 5546 vertexes. The respective PUDG has 26389
nodes and 72056 edges. The PUDG captures all low-level call graph, use-def relations,
type dependencies, etc. in one graph. Both FDG and PUDG can be constructed using a
C/C++ parser. They can be clustered into components to improve cohesion and reduce
coupling among the resulting components.
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(a) Initial clustering (b) Divergence for outliers edges (c) Divergence resolved

Fig. 3. The reflexion models as a result of LIMBO clustering on the restructured header file
dependency graph. An edge label is the number of inclusions between two clusters. The final
model can be seen as MVC model after merging “c0” and “c3” as “Controller”, merging “c1”
and “c4” as “View” and regarding “c2” as “Model”

Clustering dependency graphs. The reference architecture explored by Tran et al. [5]
was not based on the VIM documentation. Furthermore, VIM has evolved through sev-
eral major revisions from 5.7 to 6.2 and it is not clear whether the reference architecture
proposed by Tran et al. still fits the code. Therefore, we tried two different paths to see
if we can converge on the same architecture: (1) use FDG to reveal an initial archi-
tecture based on information loss minimizing clustering; (2) use PUDG to reveal the
architecture through repairing a reference architecture.

We performed an initial clustering of the updated FDG of the restructured program
using the LIMBO algorithm [3]. Chosen N = 5 as the desired number of clusters, the
output of the algorithm gave a partition of the involved files as follows:

c0={*.c except for buffer.c (41 files) 151.h 152.h ...(24 files)}
c1={buffer.c 1.h 156.h ... (143 files) }
c2={10.h 103.h ... (365 files) }
c3={110.h 150.h ... (96 files) }
c4={0.h 101.h ... (298 files)}
To apply jRMTool (the reflexion model tool) [6], we prepared a mapping with the
following format:

[ file=<fileName> mapTo=<componentName> ]

where fileName can be given as a regular expression to match multiple files using
the patterns from naming conventions. After feeding the rules found by the clustering
mapping into jRMTool, a reflexion model is created as shown in figure 3a.

The divergences and absences are indications that either the high level model does
not present a good fit or the mapping is not correct. Adjusting the high level model
requires better understanding of the architecture.

Although there is no divergence in the above model, two edges in the high-level
model, namely c1→ c0 and c1 → c3, have only very few instances in the source model.
We consider them as outliers. After removing them in the high-level model, we have
two divergences as shown in figure 3b. These divergences arise from two sets of mis-
classified headers, we reclassified them into the more appropriate cluster:

c0 -> c1: {153.h 159.h 43.h}
c3 -> c1: {110.h 116.h 200.h 210.h}
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Applying the above adjustments on the reflexion mappings, we obtain a new high-level
model as shown in figure 3c. It is worth noting that the clustering leads to an architecture
that is similar to the model-view-controller (MVC) pattern.

Selecting a reference architecture. We begin by using the architecture from Tran et al
for VIM 5.7 [5] as a reference architecture and compare the results of the reflexion
model with the PUDG for VIM 6.2. We convert the “contain.rsf” used in Tran’s result
into an initial high-level model A with the initial mapping M . Here, we only use the
call-graph, a subgraph of the PUDG where the edges are function calls, in order to com-
pare VIM 6.2 with results reported for VIM 5.7 [5]. Figure 4a shows the result of this
comparison. As this reflexion model shows, there are many divergences and absences.
These are due to the changes made to the programs between the two releases. Adding
the new functions to the original mapping and merging the sub-components “CHAR”
and “MISC” with their parent components “Terminal” and “Utility” respectively, we
obtain a new reference architecture, as shown in Figure 4b. Furthermore, we merge
“Lang Interface” into “Terminal” and “Utility” into “FILE”, and adjusted some cluster-
ings by changing the mappings. The repaired architecture is shown in Figure 5b, where
three divergences are fully repaired by merging “Terminal” and “GUI” into “View”,
part of “FILE” and “OS Interface” into “Model” and “Command” and rest of “FILE”
into “Controller”.

Componentization of VIM. Both automated clustering and manual creation of a reference
architecture suggest an MVC architectural style for VIM 6.2. We partition the program
files into three components, each of which is implemented as a directory. As for PUDG for
VIM 6.2, we use the results of earlier header restructuring [4]. To fit the MVC architecture
on VIM 6.2, we leverage the Reflexion Model [6]. We gave the reference architecture as
a high-level model and the converted dependency graph as the source-level model. In
addition, we gave the mapping from the compilation units to the clusters.

According to the reflexion mappings, the 46 compilation units are mapped into 3 di-
rectories: 4 in Model, 24 in View and 18 in Controller. Then, we copy the 956 generated
headers into these directories that are directly or indirectly included by the implement
files: 126 headers in Model, 868 in View and 862 in Controller. There are duplicated
headers among them, namely 109 headers are common to all the three directories, for
the remaining 759 headers in View and 753 headers in Controller, there are 665 in
common. We create two additional directories for common headers. Next, we put these
headers into an interface for the components to obtain just 5 headers, the file inclusion
dependencies for the directory restructured VIM becomes:

common.h -> model.h -> 4 .c files
-> common vc.h -> view.h -> 24 .c

-> controller.h-> 18 .c

4 Experimental Results

We adapted the GCC 3.4.0 compiler (1) to remove redundancies through a precompi-
lation option: -dump-program-units; (2) to remove false dependencies through a
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Fig. 4. The initial reflexion model is based on Tran’s architecture of VIM 5.7. Figure 4a shows the
initial model without considering new functions in VIM 6.2, and figure 4b shows the model with
the new functions. Here an edge label shows the number of function calls among two clusters
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Fig. 5. The reflexion model after architecture repairing, where three divergences are inevitable
while the clusters were fixed. If we merge “Terminal” and “GUI” as “View”, merge part of “FILE”
with “OS Interface” as “Model” and “Command” and part of “FILE” as “Controller”, a MVC
model can be obtained which resolves all the divergences/absences
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(a) The LOC by individual compilation units (b) The fresh build time by -g -O2

Fig. 6. Break down LOC and fresh build time of VIM

header restructuring option: -dump-headers; (3) and to cluster generated headers
into smaller number of headers and adjust the inclusion directives accordingly through
a componentization option: -dump-components. These options serve as a prepar-
ing step before a real compilation. As a result, the generated compilation units (.c files),
header units (.h files) and component units (directories with a clustered header file) are
saved into temporary files. These temporary files can be used by the second run of the
compiler to speedup its compilation. The build process is completely transparent to the
developers. It is not necessary to modify the Makefile because the new options can be
given to make through an argument, e.g., CC = "gcc -dump-program-units".
For VIM 6.2, we measured the resulting programs by our pre-compilation, restructuring
and componentization respectively.

Measuring fresh builds. The experiments were carried out on a number of networked
Linux workstations. The host machine for the compilations is a 2.20 GHz Intel Pen-
tium 4 workstation, with 512 KB cache. We also used the servers available in the local
area network of our campus lab. The compilation farm can use up to 8 processors: 2 x
2.8GHz, 4 x 2.4GHz, 1 x 2.2GHz (the local workstation) and 1 x 1.6GHz. All machines
use the same operating system. The times are measured as the average of 10 separate
runs of the same settings. The default compilation takes around 70 seconds, whereas
the build time with all the tuning options turned on reduces drastically to around 2 sec-
onds (39.5x speedup). Our techniques are also shown to be orthogonal to other tuning
techniques such as parallel build and compilation cache [8].

To make a fair comparison of the code bases, we preprocessed the original code base
using the -E -P options so that no preprocessing time is compared. The average size of
preprocessed files was reduced from 708.9 KB to 104.71 KB. The overall build size is
reduced from 33.9 MB to 5.01 MB. The saving comparisons of individual compilation
units are shown in Figure 6a. The data items are horizontally sorted by the original
preprocessed file size. The similar shapes of the two curves indicate that the reduction
is almost uniform to every compilation unit. The time savings and their comparisons
are shown in Figure 6b. Here, the data items are still sorted by the descending order of
the original preprocessed file size. In this manner, we can not only see the correlation
between the curves in this chart, but also the correlation between the preprocessed file
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size and the compilation time. The compilation time is almost uniformly reduced for
each unit, since almost every compilation unit in VIM includes the vim.h. The net
speedup by precompilation is 2.51. The precompilation overhead is needed for the first
fresh build. Even taking it into account, the precompilation plus a fresh build is still
12.6% faster than the original fresh build. If the precompiled code is compiled N times,
then the overhead can be divided by N . The restructured and componentized code has
a little less time reduction in fresh build, as shown in Figure 6b.

Measuring incremental builds. When a line of code is changed, all files dependent on
it must recompile. Since pre-compilation generates preprocessed files, one must rely
on the original file inclusion dependency to judge whether a compilation unit needs
to be recompiled. On the other hand, the header restructuring generates new header
inclusions that have no false dependencies, the number of recompilations is reduced to
the minimum. However, the larger number of headers generated by the restructuring
hampers the fresh build execution time because of increased file open/close operations,
thus the componentization can be employed to reduce the number of headers. The cost
of doing so is the increasing number of recompilations. To verify the above rationale,
we performed a simulation based on concrete numbers gathered from the time spent on
individual compilation units under various options, and also based on the FDG implied
by the generated inclusion relationships.

Since the change data of VIM at each incremental build is not available3, a proba-
bility analysis is used by assuming that a program per incremental build changes ΔL
lines of code and the probability of change for each line is uniform: ΔL/L where L is
the total lines of code (LOC).

Consider a file dependency graph (FDG), and measure the line of code for each
file as LHi

for headers Hi or LCi
for compilation units Ci. The probability of chang-

ing a header Hi or a compilation unit Ci is LHi
ΔL/L or LCi

ΔL/L respectively. For
every change in a header file Hi, all the dependent compilation units D(i) require re-
compilation, whereas for each changed compilation unit, only itself must be recom-
piled. In the original code base, a compilation unit Ci needs a re-compilation if either
its implementation is changed, or any of its dependent headers is changed. If we mea-
sure the time for its re-compilation as ti, then the overall incremental build time is

Δt =
∑

i piti where pi = [L(Ci) +
∑

j|i∈D(Hj) L(Hj)]ΔL/L (1)

Equation (1) is used with a different parameter L and a different FDG for restructured
and componentized code bases, since the restructuring and clustering needs to be done
only once during the incremental build.

The precompiled programs use the same FDG as original, but Equation (1) is ad-
justed as Equation (2) since the directly changed compilation unit needs an overhead of
t′i to redo the pre-compilation, while indirectly changed compilation unit can quickly
recompile with the precompiled code.

3 The publicly committed CVS log does not match the real development changes since not all
changes were committed to the repository.
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Fig. 7. Break down the required recompilation time as a line is changed per incremental build

Δt =
∑

i[p
c
i (ti + t′i) + (1− pc

i )p
h
i ti] , pc

i = L(Ci)ΔL/L ,
ph

i =
∑

j|i∈D(Hj) L(Hj)ΔL/L
(2)

Having the LOC of source files (Figure 6a) and the timing of the compilation units
(Figure 6b), the incremental build time analysis of the original, precompiled, restruc-
tured and componentized code bases is shown in Figure 7. In total, for the original,
precompiled, restructured and componentized code base, an incremental build when
changing one line of code takes respectively 22.73, 10.06, 1.76 and 2.46 seconds of re-
compilation (see Figure 7), whereas the fresh build takes 97.89, 39.04, 41.1 and 40.91
seconds respectively (see Figure 6b).

Finally, we verified both the header restructured and componentized VIM programs
by executing all 51 test cases and comparing the results with that of original VIM. 49
test cases ran cleanly and produced identical results, while 2 test cases failed due to
dependencies on Win32 platform. The original VIM also failed these two test cases in
our environment.

5 Discussion

The goals of improving a build architecture are many-fold and some are conflicting.
In particular, the improvement of build time through reduction of redundancies and
the number of header files that conflict with one another. Other goals contribute to our
overall objectives to varying degrees. Figure 8 depicts various objectives, issues, con-
cerns and operations as a soft-goal interdependency graph [9]. In this graph, the cloud
nodes are high-level soft-goals, those not directly affecting the correct functionality of
the system. At the root level we have the goal of improving build architecture. The
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Fig. 8. Rationale of improving the architecture for the build process

intermediate goals represent issues and concerns that contribute to our root goal, e.g.,
reducing the build time. Similarly, the lower level goals contribute to their respective
parents. The hexagon nodes are the operationalization of higher-level goals: the actions
or tasks that assist in achieving goals.

Precompilation and header restructuring are both fully automated with little over-
head. Other steps of our componentization process provide facilities for manual input.
This combination facilitates an exploratory approach to improving the build architec-
ture, where the developers have complete control through creation of a reference archi-
tecture and appropriate mappings. Using similar goal models, developers can balance
the trade offs in the architectural repair process.

6 Related Work

Architecture views and the MVC pattern. Different views of software architecture sup-
port different tasks in software development. Typical examples of views include the
“4+1” view [10], Siemens Four view [11] , and Business Component Factory [12]. In a
recent book, Clements et al [1] provide a treatment of various views, their definitions,
and their audience in a software development project. Furthermore, the authors describe
conditions under which various views may be merged together. This paper focuses on
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two such views: module view and allocation view. Module views focus on physical
program units, e.g. functions, classes, or a group thereof, and their relationships. The
allocation view (more specifically the implementation styles) focus on how a module is
allocated to the code management system. In its simplest form, this can be a directory,
or in more elaborate configuration management, a configuration item. While the mod-
ule view is necessary for understanding the static properties of the software system, the
allocation view enables project managers to assign work responsibilities or divide the
resources for build and testing activities.

Various architectural patterns have been documented (e.g. Clements et al [1]). Such
patterns provide clues to developers’ intentions and help speed up the communication
among the team. The patterns are loosely defined. In this paper, we used the idea of
patterns as a reference architecture that was the input to our componentization process.
In our case study of VIM, we used the Model-View-Controller (MVC) pattern, which
was proposed by the Smalltalk community as a reference architecture for graphical
editors [13]. In this pattern, the Model keeps the data structures of the documents being
edited, the View shows the model to the user, and updates the view whenever there
is a change in the model, the Controller calls appropriate actions based on the user’s
command. Thus, both View and Controller need to interact with the Model and each
other. Such patterns can be loosely defined and modified by reflecting different views.

Reflexion Model and architectural repair. There are many reverse engineering tools to
compare an architecture against the low-level code artifacts [6, 14, 15, 5]. Among them,
we choose Murphy et al’s reflexion model [6] and Tran’s architecture repair [5] for the
reverse engineering. The reason for the choice is not only to recover the architecture,
but also allows for maintaining it through monitoring and repairing.

This paper uses the reflexion model to verify the mappings or clusterings after the
architecture discovery and during the architecture repair. Unlike other work that uses
call-graphs as the source model, we compute the program dependency graphs as the
source model to reduce the build time through removal of false dependencies.

Tran et al [5] proposed a way of repairing an architecture through manual clustering.
The idea is similar to the reflexion model [6], which also requires a mapping between a
high level model (e.g., architecture) and a low level source model (e.g., call graphs). The
architecture repair aims at adjusting the high-level models as well as low-level source
models so that the number of divergences is kept small. Tran et al studies VIM 5.7 as one
of their case studies. In this paper, we investigated whether the same architecture is still
followed by VIM 6.2, and moreover, how much repair is needed to remove divergences.

Architecture discovery through clustering. There are several approaches in literature [3,
16,17,18] tocluster software artifacts into architectures. Among them,we choseLIMBO,
a scalable algorithm developed by Andritsos et al [3] that discovers clusters from code
facts automatically. The algorithm computes the information content of the data at hand
and its objective is to minimize the loss of information as code artifacts are placed into
clusters. Intuitively, when a code artifact is given, LIMBO tries to minimize the uncer-
tainty of identifying the cluster to which this artifact belongs. The reason for choosing
LIMBO, is that our artifacts collected from header restructuring are dependency graphs
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that can be expressed into input for the algorithm, and the algorithm allows for an un-
biased clustering with a single parameter N : the number of desired clusters.

In a program fact graph with nodes and links, each node is annotated by a set of
neighboring nodes through its links to them, i.e., each node becomes a vector over the
nodes with which it is connected. Then, the distance between two particular nodes is
defined as the loss of information we would incur if their vectors were merged into a
single vector, representative of the two. Therefore, during the first steps of the algo-
rithm, vectors with no information loss are merged. These are the vectors that contain
identical sets of code facts. Given a threshold for the information that can be lost, the al-
gorithm proceeds with more vector merges and stops when a desired number of clusters
is reached. In this paper, LIMBO was used as an initial step to discover an architecture
based on program dependency graph rather than a call-graph. Some further repair is
needed to remove divergences from automatically generated clusters.

Build speedup through header restructuring. Large legacy C/C++ software systems
typically consist of header files (.h files) and compilation units (.c files). Ideally an
compilation unit includes only the declarations that it uses. However, a header file can
be included by multiple files and as such may contain declarations and definitions that
are not used by all compilation units that include it [19]. In such cases, false dependen-
cies are created. Another problem is that symbols may be declared in more than one
places. As systems evolve, such redundant declarations tend to become common.

Redundancies and false dependencies do not affect the functionality of a system,
but they do affect the efficiency of the development process. The longer the build pro-
cess takes, the longer developers have to wait to integrate their changes. Large software
systems that contain millions of lines of code may take several hours to build. Redun-
dancies increase the size of the code and may cause inconsistencies. A false depen-
dency between a compilation unit and its header exacerbates the problem by causing
unnecessary compilation of the unit when an independent part of the header file has
changed. This problem is particularly important in light of the popularity of the sync-
and-stabilize development paradigm [20], where software systems undergo frequent,
often daily, builds. Earlier [4], we reported an algorithm to remove false code depen-
dences and redundancies through header restructuring.

7 Conclusion

As legacy software systems evolve, their build architectures decay, which result in in-
efficiencies that can hamper the development process. However, repairing the build
architecture requires balancing a number of objectives. This paper presented a study
of commercial software systems evolution and the impact on their build architecture.
Furthermore, it outlined the key requirements for repairing the architecture of a large
system. In particular, the approach facilitates exploration, where the developers provide
some input and the process automatically carries out the restructuring. The componen-
tization process was carried out on a case study, VIM 6.2, whose build architecture
closely follows small to medium size components of legacy software systems that we
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studied. After improving the build architecture, we found that technically, such a com-
ponentization can reduce the incremental build time more than 10x while reducing its
fresh build time more than 2x, and perhaps more importantly, the restructured VIM
follows the MVC pattern facilitating better understanding of the program and its main-
tenance.
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Abstract. Scenarios are a popular means for capturing behavioural re-
quirements of software systems early in the lifecycle. Scenarios show how
components interact to provide system level functionality. If component
reliability information is available, scenarios can be used to perform early
system reliability assessment. In this paper we present a novel auto-
mated approach for predicting software system reliability. The approach
involves extending a scenario specification to model (1) the probability of
component failure, and (2) scenario transition probabilities derived from
an operational profile of the system. From the extended scenario spec-
ification, probabilistic behaviour models are synthesized for each com-
ponent and are then composed in parallel into a model for the system.
Finally, a user-oriented reliability model described by Cheung is used
to compute a reliability prediction from the system behaviour model.
The contribution of this paper is a reliability prediction technique that
takes into account the component structure exhibited in the scenarios
and the concurrent nature of component-based systems. We also show
how implied scenarios induced by the component structure and system
behaviour described in the scenarios can be used to evolve the reliability
prediction.

1 Introduction

Software reliability engineering is an important aspect of many system develop-
ment efforts, and consequently there has been a great deal of research in this
area [15, 10]. One important activity included in software reliability engineering
is reliability prediction [11]. There has been much recent work in reliability en-
gineering that has addressed reliability modeling and prediction of architecture-
and component-based software [8, 19]. Components both simplify and compli-
cate reliability prediction. They simplify because accurate component reliability
estimates may be available to aid reliability prediction early in the development
lifecycle. They complicate due to the need for a sound compositional approach
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to reliability prediction. A promising compositional approach to predicting relia-
bility of component-based systems early in the lifecycle is to base the prediction
on scenarios of system usage.

Scenarios have been widely adopted as a way to capture system behavioral
requirements. Message Sequence Charts (MSCs) [9] and their UML counterpart,
Sequence Diagrams (SDs) [16] are widely accepted notations for scenario-based
specification.

There has been some previous work on using scenarios to predict the reliabil-
ity of component-based software [4, 27], but they use imprecise, coarse-grained,
sequential models of system architecture as the basis for prediction. In this pa-
per, we present a novel scenario-based approach to reliability prediction in which
a more precise, fine-grained, concurrent system architecture model is synthesised
for computing a reliability prediction. The approach starts with a set of scenar-
ios and a high-level message sequence chart (HMSC). The HMSC is annotated
with scenario transition probabilities derived from an operational profile of the
system [14], which accounts for the relative frequency with which system usage
results in a transition from one scenario to another. We synthesise from the
scenarios a deterministic probabilitistic behaviour model for each system com-
ponent. Each component model is then extended to model the probability of
component failure. The resulting probabilistic models are composed in parallel
and used to predict the reliability of the component-based system according to
Cheung’s user-oriented reliability model [3].

The contribution of this paper is a reliability prediction technique that takes
into account the component structure exhibited in the scenarios and the concur-
rent nature of component-based systems. We also show how as a result of this
implied scenarios can impact the result of reliability analysis.

The paper is structured as follows: In Section 2, we briefly present some
background information about the different elements of our approach. In Sec-
tion 3 we describe in detail our scenario-based method for predicting software
system reliability and an extensive illustration of our approach. In Section 4 we
show how implied scenarios detection can be used to improve reliability predic-
tion for concurrent software systems. In Section 5 we compare our approach to
other efforts for analysing reliability of component-based software and discuss
the main differences between our approach and other scenario-based reliability
analysis models. Finally, in Section 6 we present our conclusions and discuss
several future directions for our work.

2 Background

In this section we briefly review the two main concepts on which we base our
method for predicting the reliability of component-based software: scenario spec-
ifications, and Cheung’s user-oriented software reliability model. Note that we
adopt Szyperski’s definition of component as a unit of independent development
and deployment. We further view components as being large-grained system en-
tities (as opposed to small-scale components such as GUI widgets) for which one
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may reasonably expect to have reliability data, which in turn can be established
through reliability testing [6].

2.1 Scenarios

Scenario notations such as Message Sequence Charts [9] are used at early stages
of development to document, elicit and describe system behaviour. Scenarios are
partial descriptions of how components interact to provide system level function-
ality. A scenario specification is formed by composing multiple scenarios possibly
from different stakeholders.

The underlying notion of scenario composition is that simple scenarios can
be used as building blocks to describe new, more complex, scenarios. Simple
sequences of behavior are described using Basic Message Sequence Charts (BM-
SCs). A BMSC is formed by vertical lines representing component time lines and
horizontal arrows representing interactions between components. In this paper,
we interpret each interaction as a synchronous communication between compo-
nents. Because a BMSC can represent concurrent activity among the compo-
nents it portrays, it denotes a partial ordering of activities, which in turn under
an interleaving semantics determines a corresponding set of finite sequences of
interactions.

Three fundamental constructs for combining BMSCs are vertical composi-
tion (where two BMSCs can be combined sequentially), alternative composition
(defining that the system could alternatively choose one of the BMSCs to follow)
and iterative composition (which composes a BMSC sequentially with itself). The
high-level MSC (HMSC) is a widely adopted syntactic construct for describing
scenario composition. An HMSC is a directed graph, whose nodes refer to BM-
SCs and whose edges indicate the acceptable ordering of the BMSCs. HMSCs
allow stakeholders to reuse scenarios within a specification and to introduce se-
quences, loops and alternatives of BMSCs. The semantics of an HMSC is the set
of sequences of interactions that follow some maximal path through the HMSC.

Throughout this paper we use a variant of the Boiler Control system example
presented by Uchitel et al. [25]. As shown in Figure 1, the Boiler Control system
consists of four components: Sensor, Control, Database and Actuator. In the top
portion of the figure, we depict the HMSC specification of the Boiler, which
composes five BMSCs: Initialise, Register, Analyse, Terminate and End, which
are depicted in Figure 1, excluding the upper-left corner where the HMSC is.
Note that the variables appearing in curly brackets in the figure are an extension
to MSCs that we explain in Section 3.

2.2 The Cheung User-Oriented Reliability Model

In order to predict software system reliability, we need a reliability model that
expresses system reliability as a function of the reliability of the components and
the frequency of utilization of those components. Using Cheung’s approach [3],
the reliability of the system can be computed as a function of both the deter-
ministic properties of the structure of the program and the stochastic properties
of the utilisation and failure of its components.



114 G. Rodrigues, D. Rosenblum, and S. Uchitel

Fig. 1. The Message Sequence Chart Specification for the Boiler Control System, with
Example Probability Values

Essentially, the Cheung model is a Markov reliability model that uses a pro-
gram flow graph to represent the structure of the system. Every node Ni in
the flow graph of the Cheung model represents a program module and a di-
rect branch (Ni, Nj) represents a possible transfer of control from Ni to Nj . A
probability Pij that transition (Ni, Nj) will happen is attached to every directed
branch. Ri is the reliability of node Ni. The original transition (Ni, Nj) in the
flow graph is then modified into RiPij, which represents the probability that the
execution of module Ni produces the correct result and control is transferred to
module Nj . The reliability of the program is, therefore, the probability of reach-
ing the correct termination of the program flow graph from its initial state in the
following way: Let N = {C, F, N1, N2, ..., Nn} be the states of the model, where
N1 is the start state of the program control flow graph, the Ni are intermediate
states, Nn is the last (non-absorbing) state reached in any successful execution
of the system, and C and F are absorbing states representing the terminal states
Correct (to which there is a transition from Nn) and Fault. Let the transition
matrix be M ′ where M ′

ij represents the probability of transition from state i to
state j:

M′ =

C F N1 N2 . . . Nn

C
F
N1
N2

...
Nn

⎛
⎜⎜⎜⎝

1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 1 − R1 0 R1P12 . . . R1P1n

0 1 − R2 0 R2P22 . . . R2P2n

...
...

...
...

...
...

Rn 1 − Rn 0 0 . . . 0

⎞
⎟⎟⎟⎠
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Let M be the matrix obtained from M ′ by deleting the rows and columns cor-
responding to the absorbing states C and F . Let S be a matrix such that:

S = I + M + M2 + M3 + ....... =
∞∑

k=0

Mk = (I −M)−1

where I is the identity matrix with same dimension of M . Cheung shows that the
system reliability is Rel= S(1, n) × Rn, which is the probability of successfully
transitioning from N1 to Nn in any execution times the probability of successfully
reaching C from Nn. Equivalently, Cheung shows that S(1, n) can be computed
as

S(1, n) = (−1)n+1 |M |
|I −M | (1)

where |M | and |I−M | represent the determinant of M and I−M , respectively.
We refer the reader to Cheung [3] for further details on the description and
derivation of these formulae.

In the next section, we show how we weave the concepts presented in this
section into a method for predicting the reliability of component-based software.

3 Reliability Analysis Using Scenarios

In this section we describe a method to predict software system reliability as a
function of component reliability estimates. We annotate a scenario specification
with probabilistic properties and use a probabilistic labelled transition system
(LTS) synthesised from the scenario specification for the software reliability pre-
diction. The method is depicted in Figure 2 as five major steps: (1) annotation
of the scenarios, (2) synthesis of the probabilistic LTS, (3) construction of the
stochastic matrix, (4) system reliability prediction, and (5) implied scenario de-
tection.

Fig. 2. The Reliability Prediction Method

Four key assumptions underlie our method:

1. The transfer of control between components has the Markov property, mean-
ing that the transition from one execution state to another is dependent only
on the source state and its available transitions and not on the past history
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of state transitions. This is a traditional assumption that simplifies in work
on reliability analysis and it greatly simplifies the computation of reliability
estimates.

2. Failures are independent across transitions. Again, this assumption simplifies
the computation of reliability estimates.

3. A message from component C to component C ′ represents an invocation
by C of a service offered by C ′. The reliability with which this service is
performed is thus the reliability of C ′, RC′ . Additionally, the execution time
of the invocation is assumed to be so short as not to be a factor in the
component’s reliability. In other words, RC′ is the probability of successful
completion of an invocation of any service offered by C ′, irrespective of the
execution time of the service. This assumption is simply a modeling choice
that is made without loss of generality. For instance, we could just as easily
accommodate method-level reliabilities, and/or communication reliabilities
(as is done, for instance, in Yacoub et.al [27])

4. There is only one initial and one final scenario for the system in the HMSC.
Multiple initial and final scenarios can be combined by introducing a super-
initial and a super-final scenario, analogously to the super-initial state and
super-final state proposed by Wang et al. [26].

3.1 The Annotated Scenarios

In the first step, we annotate the scenarios ( i.e., the HMSC and BMSCs) with
two kinds of probabilities, the probability of transitions between scenarios PTSij

and the reliability of the components RC .
The transition probability PTSij is the probability that execution control

transfers directly from scenario Si to scenario Sj . This information would be
normally derived from an operational profile for the system [14]. Thus, from
scenario Si, the sum of the probabilities PTSij for all successor scenarios Sj is
equal to one. As the PTSij relates to the transition between scenarios, these
probabilities are annotated on the corresponding edges of the HMSC, as shown
on the HMSC of Figure 1.

The component reliabilities RC are annotated on the BMSCs, as also shown in
Figure 1. Without loss of generality, this paper uses coarse-grained, single values
for the overall component reliabilities; in general, we could associate reliabilities
with individual messages and/or segments of component timelines.

For the purposes of illustrating our method on the Boiler example, we use
the values depicted in Figure 1 for the PTSij . The values for the PTSij are
based on the assumption that the system executes the scenario Register (which
causes sensor readings to be entered into the database) far more frequently than
the scenarios Analyse and Terminate, and that when it does execute Terminate
there is an equal probability of reinitialising and shutting down.

The values on Figure 1 for the reliability of the components reflect the as-
sumption that the Database is a highly reliable commercial software product,
that the Sensor and Actuator are components whose hardware interface to the
sensed/actuated phenomena will eventually fail, and that Control is a complex
software subsystem that still contains latent faults.
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3.2 Synthesis of the Probabilistic LTS

The second step of our method is to synthesise a probabilistic LTS from the an-
notated scenario specification. This step is an extension of the synthesis approach
of Uchitel et al. [24], which consists of the following steps:

1. For each component Ci and each BMSC Sj , a labelled transition system
(LTS) Ci Sj is constructed by projecting the local behaviour of Ci within
Sj . In particular, each message with an action a that Ci sends or receives
in Sj is synthesised as a transition with action a in Ci Sj , and the sequence
of transitions in Ci Sj corresponds with the sequence of messages sent or
received by Ci in Sj .

2. For each component Ci, the set of LTSs constructed for Ci in step 1 are
composed into a component LTS for Ci according to the structure of the
HMSC, with hidden transitions (τ actions) linking the final state of Ci Sj

to the start state of Ci Sj′ whenever there is a transition from Sj to Sj′ in
the HMSC. The resulting LTS includes a new start state corresponding to
the start state of the HMSC.

3. Each component LTS constructed in step 2 is reduced to a trace-equivalent
deterministic, minimal LTS. This is consistent with the delayed choice se-
mantics of the ITU MSC standard [9].

4. The architecture model for the system is taken as the parallel composition
of the minimised component LTSs constructed in step 3.

Our extension of this approach exploits recent probabilistic extensions to the
LTS formalism [2] and involves enhancements to each step listed above. The
enhancements have the effect of mapping the probability annotations of the
scenario specification into probability weights for transitions in the synthesised
architecture model. In step 1, for each transition in a Ci Sj representing the in-
vocation of a service offered by Ci, an additional transition from the same source
state is added with the target state being the global ERROR state. The resulting
pair of transitions forms a probabilistic choice, with the former transition having
probability RCi and the latter transition having probability 1−RCi .

In step 2, the scenario transition probabilities PTSij are mapped to prob-
ability weights on the hidden transitions linking the Ci Sj . Figure 3 illustrates
the LTS of component Control that would be synthesised as a result of apply-
ing steps 1 and 2 of our synthesis method. Each shaded area contains an LTS
synthesised in step 1 from a BMSC of Figure 1 and thus models the behaviour
of Control within that BMSC. The transitions linking these different LTS are
synthesised in step 2 and correspond to the transitions between BMSCs defined
in the HMSC of Figure 1. Note that the probability weights on the τ transitions
are the same as the corresponding transitions in the HMSC of Figure 1. Note
also that because data is a message received by Control in scenario Analyse,
it is synthesised as two transitions, the “successful” transition being weighted
with probability Rctrl and the transition to the ERROR state (labelled −1 in
the figure) being weighted with probability 1 − Rctrl. This action only applies
to transitions labelled with data as it is an application of assumption three we
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Fig. 3. Probabilistic LTS Synthesised for Component Control

explained earlier in this section. Note that the final state of the model is state 1
in the top right part of the figure.

Continuing with our extensions, in step 3, the probability weights must be
handled correctly in the process of reducing each component LTS to its deter-
ministic, minimal form. Intuitively, the elimination of a τ transition results in the
merging of the transition’s target state with its source state, with the outgoing
transitions of the target state becoming outgoing transitions of the source state.
Since there may be multiple τ transitions from the original source state (each
with probability weight less than one), the probability weight of an eliminated
τ transition must be “pushed” to the newly accumulated outgoing transitions,
with the new weight on each such outgoing transition equal to its old weight
times the weight on the eliminated τ transition. In the presence of τ self-loops
(such as the τ self-loop on state 0 of Control Register in Figure 4), it can be
shown that such transitions can be eliminated entirely without any of the above
merging or pushing of its weight. At the end of the elimination of outgoing τ
transitions from a state, the weights on the outgoing transitions of the resulting
state may not sum to one, in which case the weights must be normalised so that
they do sum to one.

Using the example parameters presented previously in Figure 1, the resulting
minimised LTS for component Control is depicted in Figure 4.

Fig. 4. Minimised Component LTS for Component Control

Finally, in step 4, the system architecture model is constructed as the par-
allel composition of the LTSs synthesized for each component. The probability
weights of the composed LTS are computed according to the notion of generative
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Fig. 5. The FSP of the Architecture Model

parallel composition defined by D’Argenio et al. [5]. At the end of this step, it

follows that for each node of the synthesized architecture model,
n∑

j=1
PAij = 1,

where n is the number of states in the LTS architecture model and PAij is the
probability of transition between state Si and Sj of the composed LTS. Other-
wise, PAij = 0 if the transition (Si, Sj) does not exist.

The architecture model for the Boiler Control system resulting from the ap-
plication of all four steps of our extended synthesis method is depicted in Fig-
ure 5. For the sake of readability, we present the model in textual form as a
specification expressed in FSP (Finite State Processes), the modelling notation
of the LTSA tool (Labelled Transition System Analyser) [23]. FSP serves both
as a modelling notation for end users, and as an intermediate form used in the
automated synthesis of LTS models. As shown in the figure, a side-effect of the
synthesis is the use of the auxiliary action endAction as the final action in a
terminating path through the LTS.

3.3 Computing the Reliability Prediction

In this final step of our prediction method, the architecture model synthesised
in the previous step is interpreted as a Markov model, and we apply the method
of Cheung to compute the reliability prediction. In particular, the transition
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0.99 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.999 0 0 0 0 0 0 0 0 0 0 0
0 0 0.809 0.152 0 0 0 0 0 0 0.038 0 0 0
0 0 0 0 0.95 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.521 0 0 0 0.474 0 0 0 0
0 0 0.964 0 0 0 0.036 0 0 0 0 0 0 0
0 0.495 0 0 0 0 0 0 0 0 0 0 0.495 0
0 0 0 0 0 0 0 0 0.95 0 0 0 0 0
0 0.471 0 0 0 0 0 0 0 0.524 0 0 0 0
0 0 0.616 0 0 0 0 0 0 0.378 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0.495 0.495 0
0 0 0.855 0 0 0 0 0.145 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6. The Matrix Derived from the Synthesized Boiler LTS

probability weights of the architecture model are mapped into a square transi-
tion matrix M ′ whose row entries sum to one. This is used as the matrix M ′

described in Section 2.2, with N = {E,−1, 0, 1, ..., n − 1} the set of states in
the synthesised LTS, E the terminal state of correct execution (corresponding
to state C described in Section 2.2), −1 the terminal fault state (state F of
Section 2.2), and n − 1 the state from which a transition to state E is made
upon action endAction (state Nn of Section 2.2). Note that the numeric state
labels produced by LTSA may need to be renumbered so that the state leading
to state E is the highest numbered state, as required by Cheung’s model.

In Figure 6 we depict the transition matrix derived from the synthesised
architecture model presented in Figure 5; note that this is actually the reduced
matrix M , with the rows and columns for states E and −1 eliminated as in
Section 2.2. Additionally, we point out for the fact that the rows in the sparse
matrix in Figure 6 will sum to one if we add the transitions to the ERROR
state. Applying the Cheung model to that matrix, we compute the reliability
prediction for the Boiler Control system as Rel= 0.649 = 64.9%.

4 Implied Scenarios

Scenarios describe two aspects of a system. On the one hand, they describe a set
of system traces the system is intended to exhibit. On the other, it describes the
components that will provide system level functionality and their interfaces (the
messages these components can use to interact between each other to provide
system level functionality). In the example in Figure 1, we see that the Boiler
Control System is expected to exhibit a trace ”start, pressure, query, data, com-
mand ...” and that component Control interacts with Database only through
messages query and data.

It has been shown [1, 25] that given a scenario specification, it may be im-
possible to build a set of components that communicate exclusively through the
interfaces described and that exhibit only the specified traces when running in
parallel. The additional unspecified traces that are exhibited by the composed
system are all called implied scenarios and are the result of specifying the be-
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Fig. 7. Implied Scenario Detected

havior of a system from a global perspective yet expecting it to be provided by
independent entities with a local system view. If the interaction mechanisms do
not provide components with a rich enough local view of what is happening at a
system level, they may not be able to enforce the intended system behavior. Ef-
fectively, what may occur is that each component may, from its local perspective,
believe that it is behaving correctly, yet from a system perspective the behavior
may not be what is intended.

The Boiler Control System of Figure 1 has implied scenarios, Figure 7 shows
one of them. From the specification it is simple to see that after initialising
Sensor there must be some pressure data registered into the Database before
any queries can be done. However, in the implied scenario of Figure 7 a query is
being performed immediately after start.

Why is this occurring? The cause is an inadequate architecture for the traces
specified in the MSC specification. The Control component cannot observe when
the Sensor has registered data in the Database, thus if it is to query the Database
after data has been registered at least once, it must rely on the Database to
enable and disable queries when appropriate. However, as the Database cannot
tell when the Sensor has been turned on or off, it cannot distinguish a first
registration of data from others. Thus, it cannot enable and disable queries
appropriately. Succinctly, components do not have enough local information to
prevent the system execution shown in Figure 7. Note that each component is
behaving correctly from its local point of view, i.e. it is behaving according to
some valid sequence of BMSCs. The problem is that each component is following
a different sequence of BMSCs! The Sensor, Control and Actuator are going
through scenarios Initialise, Register, Terminate, Initialise, Analysis, Register.
However, the Database is performing Initialise, Register, Analysis, Register.

Implied scenarios indicate gaps in a scenario-based specification. They can
represent intended system behaviour that was missing from the inherently partial
scenario specification or undesired behaviour that should be avoided by changing
the architecture of the system. Hence, implied scenarios need to be validated
(identifying them as positive or negative system behaviour) and the scenario
specification elaborated accordingly.

The existence of an implied scenario means that the reliability prediction for
the Boiler Control System described above has been applied on a scenario speci-
fication that has a mismatch between behaviour and architecture. The behaviour
model constructed in the previous section to predict reliability can exhibit be-
haviour (an implied scenairo) that has not yet been validated and that, acording
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to whether it described intended or unintended system behaviour, can impact
system reliability.

As an example, suppose that the rate at which the sensor checks pressure
information and saves it in the database is high enough that the probability
of occurence of the trace in Figure 7 is negligible. Then reliability should be
predicted on the behaviour model of Figure 5 constrained in such a way that
the implied scenario cannot occur. We can use the approach described in [25] to
build such a constraint.

If we calculate the reliability of the resulting constrained model in the same
way as described in Section 3 then we obtain 86.2%.

On the other hand, the implied scenario may be undesired behaviour that
needs to be avoided through a change in the architecture of the system. In
this case, different or additional components will be needed, and the reliability
performance will have to be recalculated from scratch.

Either way shows that implied scenarios can impact the reliability prediction
significantly and that they should be validated before reliability is calculated.

More generally, the existence of implied scenarios as a result of the close
relation that exists between behaviour and architecture in scenario-based speci-
fications supports our claim that taking into account behaviour and architecture
when performing reliability prediction is important.

5 Discussion and Related Work

Several previous architecture-based approaches to reliability engineering of
component-based systems have been reported. They can be divided into two
main categories, state-based approaches and path-based approaches. Goševa-
Popstojanova and Trivedi provide a comprehensive survey of the various ap-
proaches [8]. For the sake of brevity, we provide here a brief view of the ap-
proaches of greatest interest to the scope of this work.

State-based models [3, 7] use a control flow graph to represent the system
architecture. In such models it is assumed that the transfer of control among the
components can be modelled as a Markov chain, with future behaviour of the
system dependent only on the current state and not on past behaviour. Gokhale
et al. use a regression test suite to experimentally determine the architecture of
the software and the reliabilities of its components. As described in Section 2,
Cheung’s model takes into account the reliability of each component and the
operational profile. In general, relying the analysis of the software reliability on
provided state-machines may not be accurate. In our model, the system states
are generated by the LTSA based on the precision of a model checker. Although
scenarios are provided as a basis for the analysis, we explore the expressiveness
of the given scenarios by checking if the existence of implied scenarios that could
impact negatively during the system execution.

Path-based models [20, 27] compute the reliability of the system by enumer-
ating possible execution paths of the program. The scenario-based method of
Yacoub et al. [27] is perhaps closest in spirit to our own approach. In many ways
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their method is a hybrid approach in which a state-based model of the system is
constructed from a scenario specification (a set of basic scenarios plus a graph
representing the composition of basic scenarios), and then paths through the
model are enumerated until a threshold execution time is reached along each
path. Their approach reveals the pitfalls of using imprecise, coarse-grained be-
haviour models of system architecture. The model used in their approach is the
component dependence graph (CDG), a state-machine model in which the states
represent execution inside a particular component (with one state per compo-
nent), and the transitions represent the transfer of control from one component
to another (with a transition from one component to another representing a
merge of all messages sent by the former to the latter in the scenarios). Because
the representation of component behaviour in the CDG is at the level of whole
components, it is an inherently sequential model of system behavior in which
one component executes at a time, meaning that any concurrency inherent in
the scenario specification is lost. Furthermore, a CDG can exhibit sequences of
component transitions not found in the scenarios from which it is derived. In a
sense such sequences are implied scenarios, but they arise not as an artefact of
components having limited local knowledge of global behaviour. Instead, they
are merely a consequence of modelling the system architecture imprecisely at the
granularity of whole components rather than at the granularity of the component
interactions specified in the scenarios. Finally, it can happen that a component
in a CDG is represented by an absorbing state, even though the scenario spec-
ification itself is able to progress beyond any interactions with the “absorbing”
component. Indeed, we attempted to model the Boiler Control system using the
approach of Yacoub et al., with the result that the Actuator was an absorbing
component from which we had to add transitions artificially to other components
in order to construct a model that was able to progress to the final state.

In previous work we show how reliability engineering of component-based
software systems can be carried out following a model-driven approach [17, 18].
It would be fair to say that the Unified Modeling Language (UML) has had
a considerable influence to make viable model driven analysis approach such
as [22], where design and analysis of software architecture can be specified, visu-
alized, constructed and documented using one common notation. Since its first
version, UML has been enriched in order to become more precise syntactically
and semantically. The ultimate goal is to support automated or semi-automated
transformation of design models to code, raising the level of abstraction at which
automated code generation is applied. A major challenge for model-driven de-
velopment will be finding ways of enforcing or preserving properties established
early in development, particularly non-functional properties such as reliability
predictions.

Other work can be situated in the area of a model-driven analysis tech-
nique: [12, 13, 4]. These approaches also propose a framework for automatic gen-
eration of reliability models from software specifications, bringing reliability anal-
ysis to early stages of the software lifecycle. István et al. [12, 13] shed some light
on ways to fully automate dependability analysis, applied to the Fault-Tolerant
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CORBA, using graph transformations into their VIATRA framework. The work
from Singh et al. [21] provides a prediction algorithm to analyse the reliability
of the system prior to its construction. Their approach requires the user to pro-
vide global behavior scenarios other than the local behavior of the components
interactions. However, this feature may turn out to be unsuitable for the system
modularity and therefore hindering systems maintainability.

6 Conclusion and Future Work

In this paper, we have presented a framework to quantitatively assess software
reliability using scenario specifications, thus applicable to early phases of the
software life cycle. Our major contribution lies on a reliability prediction tech-
nique that takes into account the component structure exhibited in the scenarios
and the concurrent nature of component-based systems.

In the approach we present, we have extended scenario specification to model
the probability of component failure, and scenario transition probabilities derived
from an operational profile of the system. From the extended scenario specifi-
cation, probabilisitic behaviour models were synthesised for each componenet
and then composed in parallel into a model for the system. The Cheung model
for software reliability was then used to compute a reliability prediction from
the system behaviour model. The importance of implied scenarios detection in
the software reliability analysis was then addressed so that the intended system
behaviour could be enforced despite the local view of the components. We numer-
ically showed how the detection of implied scenarios can improve the reliability
assurance of the software system.

For future work, we will use our framework to enhance software system relia-
bility using software architecture models. In doing this, we can use our framework
for the purpose of model driven development to construct deployment profiles
and generate implementation code configured to the desired reliability assurance
for software systems. Another promising direction includes the use of the syn-
thesized component LTS to predict component reliability. This may be useful
when there are uncertainties associated with a component s operational profile
coming out from lack of implementation artifacts. In Section 4 we presented
initial evidence of how important is to consider implied scenarios when assess-
ing provided scenario specifications for reliability. However, additional work is
needed to explore methods and techniques that can fully reveal the effect of im-
plied scenarios on system reliability. Finally, we plan to apply our approach on
case studies of larger, more realistic systems in order to evaluate its scalability
and the accuracy of the predictions it produces.
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Abstract. Component reuse is inhibited by two factors: Lack of an ad-
equate modeling representation of components and lack of a method to
predict properties of a composition of application components. In this
paper, we propose a framework for conflict identification. The frame-
work is primarily based on a taxonomy describing communication and
technology related properties. Conflict identification is based on inference
rules. Furthermore, we aim to integrate conflict reasoning in the software
development process. We will show that the Unified Modeling Language
and the Resource Description Framework can be combined to provide a
solution to the representation problems, without resorting to extension
mechanisms, and without limiting to a specific component platform. As
a real life example, we model the connection of an .Net Serviced Compo-
nent to an Enterprise Java Bean as part of a mortgage bank’s enterprise
architecture and prove its viability.

1 Introduction

The advantages of buying a fitting component to provide a part of a solution
over custom construction are long established [7]. The number of components
we can consider to build a solution depends on the size of the market [14] from
which we can buy the solution. Unfortunately, platform boundaries subdivide
this market, because we can not evaluate if components of different technologies
are compatible or not.

Each technology can be described by properties relevant for communication.
We aim to support conflict analysis for middleware components based on such
properties. We reuse an adapted version of the connector taxonomy proposed by
Medvidovic/Mehta as this taxonomy provides more fine grained properties com-
pared to other approaches. As this taxonomy is designed platform independently,
we customized the taxonomy for particular middleware technologies. Based on
this taxonomy, developers can estimate on the fly, how complicated a particular
composition will be.

Furthermore, we aim to support component analysis in the context of the
software design process. Design is often based on abstract models, that are rep-
resented by diagrams in a graphical notation like that of the UML. We perceive
a method to quickly estimate component compatibility in the context of these
tools valuable, because
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Fig. 1. Architecture of the Ontology-Based Framework

– developers can decide on the fly how complex a composition is.
– analysis can be carried out in the normal development process, without the

need to transfer data into a specialized analysis tool.

While the metamodel of the UML is designed to accommodate object-oriented
languages, it does not offer straightforward support for deductive logic, which
we would need to draw conclusions about the compatibility of components.

We propose to attach only the necessary information about components to
elements in a model, and then reason about this information externally against
our domain-specific background knowledge. Our approach provides the ability
to check that this additional meta-information fulfills structural constraints like
type specifications, and thus guarantees the validity of input to services based
on such information.

Figure 1 shows an overview of the overall process. Execution proceeds as fol-
lows: Within a UML tool - in this case Poseidon UML - we create a component
model1. Components are annotated with the property information available.
This includes properties describing the technologies as well as other properties
that are known to the developer (see figure 2 for an example). We connect the
components with an association and attach a comment which indicates to the
service that this association is to be processed (1). Then we submit the model
to the Model Reasoner Service embedded in EVE2 [22] (2). The service extracts
the annotations in the model and attaches itself to a repository designed to hold
Analytical Data on Architectures and Models (ADAM). The service extracts
the addressed part of the knowledge base (3/4) and passes it to the reasoner,
combined with the information extracted from the model(5). The reasoner cal-
culates the match and returns its characteristics to the service(6). The service
embeds the resulting information in the model, attached to the association (7).
If the result is a conflict, a conflict description is generated. If the result is a
match, the service can fill in implied property information for each component,
if desired by the user.

1 In principle, this can be done either with UML 1.x or 2.0. However, most existing
tools support only UML 1.x so that we use a profile to describe components.

2 EVE is a framework to support tool independent manipulation of UML models.
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Fig. 2. Integrating two heterogeneous components, initial step

Example component annotations can be found in figure 2. Both components
are part of a customer information system of a large European mortgage bank:
the simulation of financial development for different forms of mortgage contracts,
predicting expected savings for combinations of financial products. The system
consists of two components, a management component which acts as a customer
facade and a set of worker components, which provide the calculation. The calcu-
lation functionality (’BLCalc’) is implemented in a piece of Java code originally
developed for a standalone application. To share the functionality the code was
encapsulated as an EntityBean component and deployed on a UNIX application
server. The ’BLContractMgmt’ Component was implemented as a .Net Serviced
Component on a windows server.

The rest of the paper is structured as follows: In section 2 we discuss our
platform independent framework for reasoning about component matches and its
schema. Section 3 discusses the state of the art regarding background knowledge
in UML diagrams and introduces our RDF-based solution. Section 4 summarizes
the approach and widens the discussion to include other fields of application.

2 Conflict Identification for Component Composition

In this section, we first provide an overview of existing approaches to classify
component-based systems as well as of approaches to identify conflicts. We then
introduce our framework for conflict identification, explain the compatibility
relationship used to identify conflicts and discuss some results obtained by ana-
lyzing our running example.

2.1 Existing Approaches

Architectural Styles were one of the early approaches in software architecture
to classify systems. A style specifies the parts of a system as well as properties
that need to be satisfied in a system configuration. Bass et. al. [2] define an
architectural style as follows:

By a particular style we mean a set of design rules that identify the
kinds of components and connectors that may be used to compose a
system or subsystem, together with local or global constraints on the
way composition is done.
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Fig. 3. Procedure Call: Starting from the Connector Type Procedure Call, including
Dimensions and Values as defined by Mehta

One possible application area of styles is the classification of systems regard-
ing the composition of their constituting parts. Shaw [19, 20] provides such a
classification. A style is represented by a set of values that describe the kinds
of components and connectors, the control and data flow as well as their in-
teractions in a system. Another application area infers resulting properties of
a particular style. A style, for example, is indicative of such aspects as system
reconfiguration, component exchange, and component adaptation.

In general, an architectural style takes a kind of ’macro’ view of a system. It
describes ’coarse grained’ properties that must hold for a whole system. These
are helpful, if we investigate the system as a whole. However, only a few of
these properties are relevant for deciding compatibility of single components.
Unfortunately, the classification provided by Architectural Styles is not useful
for analyzing middleware technologies such as CORBA, J2EE etc. These systems
show almost no differences in the classification. Middleware systems aim for
similar goals and are designed with similar architecture in mind.

Medvidovic/Mehta [15, 17, 16] propose a sophisticated taxonomy to describe
communication properties of connectors. Part of this taxonomy, rendered by our
ODIS tool [5] is shown in figure 3. It describes relevant properties for a procedure
call. This taxonomy consists of eight connector types, each of which is described by
several dimensions (complex properties) that consist of subdimensions and values.
Each connector can provide four kinds of services: communication, coordination,
conversion,andfacilitation.Connectors inprogramminglanguagesandmiddleware
technologies can be described by deriving and extending the taxonomy.

The analysis of middleware technologies in the context of Mehta’s connector
taxonomy also reveals several problems: The terms used in the taxonomy are
not explicitly defined. For a number of terms, a lot of different definitions are
available. Some terms are ambiguous as different interpretations in the taxon-
omy can be chosen. For example Exceptions can refer to a method that throws
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Fig. 4. The Property Model of the Framework

an exception or one that is activated because of an exception. The taxonomy de-
scribes connector types as part of the taxonomy. We feel that these types should
not be included in the taxonomy, because connector types are the entities that
are described by properties, but they themselves are not properties.

Other approaches aim to automatically discover mismatches based on con-
flicting characteristics [10, 9, 1, 12, 24, 16]. Most of these approaches concentrate
on architectural mismatches. They do not handle technologies directly as well
as structural and behavioral specifications. They can be classified in approaches
using only a structure such as a table to describe properties [1, 16] and in ap-
proaches which additionally provide reasoning support [10, 9, 12]. Approaches
providing reasoning support often only support a subset of properties available
in the former category.

2.2 Property Model

To analyse the relationships of communication and technology related proper-
ties, we need to define a means of notation. Our property model shown in figure 4
defines a structure to create hierarchically connected properties. Each property
is described as a feature that can either be optional or mandatory. A feature
can contain several sub-features. Sub-features can be grouped by two operators
’xor’ and ’or’ to describe possible feature combinations. Furthermore, each fea-
ture can be associated with attributes (FeatureAttributes) to state additional
requirements. ’EntityTypes’ can be associated with ’Features’ by two relation-
ships: one to describe communication properties (comProps) and one to state
technology related properties (techProps).

To organize the space of component properties, we decided to reuse the exist-
ing taxonomy by Medvidovic/Mehta, as it provides the most fine grained proper-
ties. Unfortunately, this taxonomy is designed on a platform independent level.
Therefore, we needed to analyse platform specific connectors for middleware
systems of interest. We modified the original taxonomy in the following way:

– Platform specific properties that describe communication in Java, Jini, J2EE
and .Net were added.

– A modifier for conflict analysis was introduced. It describes whether a prop-
erty is ’mandatory’ or ’optional’ in a given context.

– The meaning of properties was exactly defined: A definition is associated
with every property.

Property Model

PropertyType

Dimension

Value

rdf:LiteralEntityType

ComponentType

ConnectorType
modifier

pname

Description

rdfs:subClassOf

rdfs:subClassOf

contents

comProps

techProps

rdfs:subClassOf

rdfs:subClassOf
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– Connector types were removed from the taxonomy.
– Name clashes that occur due to the removed connector types were resolved.

A second taxonomy covers the aforementioned technological properties such as
platforms (OSs), programming languages, etc. As we have not found any exist-
ing taxonomy that covers these properties, we have defined them from scratch.
Technology-related information, such as the language, in which a component is
written, platform availability or resulting cost provide additional information
regarding the complexity of a connector. For example, it may describe if a com-
position of two components requires a distributed connector, or if they can be
composed by a local connector. We do not detail this taxonomy in this paper,
as it does not relevantly contribute to the topic at hand.

2.3 The Role of Communication Properties Regarding
Composition

The communication taxonomy describes properties in the context of connec-
tor types. However, for our example, we also need to interpret communication
properties in the context of component types.

If we represent each technology (EJB, ServicedComponents) by a middleware
component, i.e. a binary artifact, each application component (BLCalc, BLCon-
tractMgmt) is bound via a precisely defined mechanism to that middleware and
cannot be used independently. Figure 5 shows a typical mechanism that uses
stub and skeleton objects to integrate components with respect to a particular
middleware. Here, middleware plays a dual role: It is at the same time a connec-
tor that facilitates the communication and a component that can be physically
deployed in an appropriate location.

Consequently, application components (BLCalc, BLContractMgmt) are re-
stricted by the properties offered by their technologies. As we have described
communication properties of EntityBeans and ServicedComponents [11], we are
able to annotate application components (BLCalc, BLContractMgmt).

Regarding a composition, components are either the initiators of a communi-
cation or the receiver. Conflict identification needs to only consider the relevant
properties for such a constellation. For example, an EntityBean is annotated
with properties concerning data access to a underlying database. In a communi-
cation where the EntityBean is called by a client, however, these properties need
not to be considered, because the client is not concerned with database issues.

Figure6showstheexamplecomponentsannotatedwithcommunicationproper-
ties relevant for communication initiated by the ’BLContractMgmt’ component.

2.4 Conflict Identification

We assume that the connector taxonomy as well as the taxonomy for technology
related properties contain all relevant properties for communication. Compo-
nent comparison is based on the comparison of annotated properties based on
their type (either optional or mandatory). Two entities are compatible, if for all
vertices they either require a property or do not support it. For example, two
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Fig. 5. Component Binding in Subject to the Underlying Middleware

components C1 and C2 are compatible, if the predicate comp(C1,C2) evaluates
to true:

∀n ∈{C1.r.comP rops ∪ C1.r.techP rops}
isMandatoryFeature(n) →
∃m ∈ {C2.q.comP rops ∪ C2.q.techP rops}·
n.fname = m.fname∧
isMandatoryFeature(m)

(1)

Unfortunately, this approach suffers several problems:

1. Often, it is difficult to decide if a property is required in a particular tech-
nology or not. Middleware specifications describe communication protocols
coarse grained only. Lower level properties are often not or only partially
described. Consequently, we need to deal with unknown properties.

2. Technologies support several communication mechanisms that may be used
by application components, but are not compulsory. Consequently, we must
distinguish between a property that is supported as an option or that is
required (mandatory).

In response to these problems each feature can be described by one the following
states:

Optional: The property can be supported by the component.
Unsupported: The component does not support this property.
Mandatory: The component requires this property for communication.
As a result, we get a compatibility matrix (shown in table 1) describing valid and
invalid property combinations between the two components to be composed. We
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Fig. 6. View of the Communication Properties of the Example Components in Their
Middleware Context

Table 1. Compatibility Matrix between two Components

Component vs. Com-
ponent

mandatory optional unsupported

mandatory
√

w f
optional w w w
unsupported f w

√
w = warning
f = failure

distinguish conflicts of two categories: Failures are generated if properties definitely
do not match, e.g. ’unsupported’ vs. ’mandatory’. Warnings are generated due to
’optional’ properties. For example, if ’BLCalc’ is annotatedwith an ’optional’ prop-
erty it is unclear if it actually supports the property or not.Consequently, awarning
needs to be generated. Optional properties are often annotated to connector types
andmiddlewarecomponentssuchastheEntityBeancomponenttype.Theydescribe
the communication mechanism provided by a technology. These mechanisms may
be used by application components but are not required.

To express conflict rules we require a logical formalism. As the component
descriptions can be viewed as instances of a more general component schema,
a formalism like F-Logic [13], which distinguishes between instance data and
schema information (types/classes) would be advantageous.

Triple [21] satisfies these conditions. It is a language designed for reasoning
in the semantic web. Triple states facts as quadruples (S,P,O,C): S for subject,
the entity to be described. P is a predicate that states the relation of interest, O
stands for an Object, which is either a Literal or another quadruple. C describes
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the context within which the tuple is valid. Thus, Triple facts are RDF state-
ments extended by the ’context’, which allows specifying views of an object in
different contexts. This feature is extremely helpful, because it divides up fact
bases into chunks that can be used as separate units.

In addition Triple provides two further advantages: It allows universal iden-
tification of resources through introduction of URIs. Section 3 shows how this
can be applied. Also Triple allows the creation of new contexts on the fly by
definition of mapping rules. We have applied this to transform a UML model
containing platform independent components into different EJB component re-
alizations. The concrete transformation is implicitly selected by requirements
stated as parameters to the transformation rule[6].

Conflicts are generated by ’Triple’ rules of the following kind:

forall ?c,?s,?f,?n,?pc,?ps unsupportedMandatoryFeatures(?c,?pc,?s,?ps,?f)<-

getComFeatures(?c,?pc,?f) and

hasOnlyMandatoryParentFeatures(?f) and

getFeatureName(?f,?n) and

isFeatureNotBound(?s,?ps,?n).

forall C,S,PC,PS @failure(C,S,PC,PS) {

forall ?x, ?f, ?ns

?ns:?x[sys:directType->core:FeatureConflict;

core:concerns->C;

core:relates->S;

core:concernsFeature->?ns:?f;

core:cause->’Mandatory feature of client unsupported by server.’]

<-

unsupportedMandatoryFeatures(C,PC,S,PS,?ns:?f)@core and

concatConflict(?x,?f,’Failure’).

}

The first rule identifies mismatched properties. The second rule (a mapping)
generates conflict statements. These statements can be directly converted to
plain RDF and handed back to the modeling tool.

2.5 Conflicts in the Example

Analysis of the example components yields several conflicts, part of them
shown in figure 7. For example, a failure concerns Event support (Fea-
ture30Asynchronous). An EntityBean cannot handle events. These are
covered by MessageBeans in J2EE. Furthermore, naming schemes (Fea-
ture21Structurebased, Feature22Hierarchical) are handled differently in both
technologies: J2EE uses a structure based naming mechanism, .Net an attribute
based scheme. Furthermore, a lot of warnings (not shown) are generated, because
most property values are imported directly from the underlying component types
(EntityBean and ServicedComponent). As discussed above these components are
often ’optional’. So, it cannot be inferred that they actually match.

As shown in figure 1 conflicts are handed back to the EVE Service (6). The re-
sults are attached to the association (7) and presented to the developer. Conflicts
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Fig. 7. Conflicts Generated by Comparing Both Components

need to be interpreted by a developer. She needs to select important properties
and prune superfluous properties. In any case, it should be possible for a devel-
oper to infer, what is actually needed for composition and how this impacts on
cost and resources.

3 Augmenting the UML with an Overlaid RDF
Structure

In UML 1.x, external resources like files can only be represented as components
and artifacts, which can only be used in component and deployment diagrams.To
make statements about such external resources, an association is drawn from
the element which is assigned the property to the artifact which represents the
associated resource. These associations rarely appear in diagrams, because they
cut across diagram types, making their practical application difficult. In addition,
the choice of component types available is limited and the extension of that type
space involves the creation of UML profiles. If only one profile is allowed under
the version of UML in use, the modeler has to choose to either apply the profile
she uses for her primary problem domain and drop detailed modeling of the
types of background resources, or model the background resources in detail and
drop the profile for the domain, or manually create a unified profile, which may
lead to clashes between stereotype constraints. In any case, all the information
which one merely wanted to attach has to be included in the model in a tedious
way, because it involves substantial indirection: Information about the external
resource is linked to a Model Element that is created solely to act as a placeholder
for that type of metadata.
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Even in today’s UML 2.0, there is no simple mechanism to attach background
knowledge to the model. Some case tools like Rational Rose work around this
limitation by introducing links to other resources as a new type of Model Element
residing in Packages next to other Model Elements. These link-based extensions,
apart from being proprietary to the tool, have several disadvantages:

– The meaning of the resource that the link points to is only weakly defined.
For example, if a link, which points to an HTML page about a Java library,
resides in package ”x”, implications are unclear. It could mean that the
library realizes package ”x” or that the model relies on package ”x” or that
the author of this model used patterns described on the page to create the
contents of that package.

– Links are also limited because they can only be directly attached to Packages
and no other Model Elements. For example, to state that a Class acted in the
role of a ConcreteCommand in the Command Pattern, one would need to
create a link in the Package and additionally describe the relationship to that
link on a Comment attached to the Class. Furthermore, such a Comment
may be ignored when interpreting the model elsewhere, since a Comment
”has no semantic force but may contain information useful to the modeler.”
[18–pp.2-28]

While the previously described extensions of plain UML are either tedious and
problematic, like the creation of profiles for resource description, or unprecise like
the use of unqualified package links, the extension mechanism offers the Tagged
Value - a useful yet simple feature[18–pp. 2-68]: ”An arbitrary property attached
to the Model Element. The tag is the name of the property and the value is an arbi-
trary value. The interpretation of the Tagged Value is outside the scope of the UML
metamodel.” However, Tagged Values do not have any descriptive power with re-
gards to outside resources. But this can be introduced by defining a convention
describing how to link and type such resources. In fact, the definition of Tagged
Values can be interpreted similarly to the representation of knowledge about re-
sources in the Resource Description Framework (RDF) [23–3.11]: ”The underlying
structure of any expression inRDF is a collection of triples, each consisting of a sub-
ject, a predicate and an object. A set of such triples is called an RDF graph ... Each
triple represents a statement of a relationship between the things denoted by the
nodes that it links.” So to join Tagged Values and RDF we only need a bijective
function, which maps Tagged Values to RDF statements and vice versa.

In a nutshell, our approach involves the following steps: Assign a Tagged
Value to each Model Element to be annotated. Choose its Name to be the Uni-
form Resource Identifier (URI)[3] of the properties’ definition and the Value to
be the URL of the resource. Extract the RDF. Query or reason in logic.

3.1 RDF Statements

The example in listing 1.1 shows how the .Net Calculation component is de-
scribed as supporting asynchronous communication by linking it with an ex-
ternal resource via a semantically well-defined relationship. This relationship is
expressed by an RDF triple which describes a Tagged Value. The parts of the
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triple are the equivalent of a sentence with subject, predicate and object. The
grammatical elements are:

Subject. There is a Component named ”BLContractMgmt” which resides in
the UML model in a Package named ”Business Apps”.

Predicate. It can be described in terms of event synchronization support, as
defined in the core of the .Net Serviced Component Taxonomy of the CIS group.

Object. From the different choices on event synchronization, it does only sup-
port asynchronous message transfer.

Listing 1.1. An RDF description of a component’s transaction capability

1 (S) <.#Bus iness%20Apps : : BLContractMgmt>
2 (P) <http :// c i s . c s . tu−b e r l i n . de/picm/ core /

ServicedComponent#EventSynchronizat ion>
3 (O) <http :// c i s . c s . tu−b e r l i n . de/picm/ core /

ServicedComponent#Asynchronous> .

Listing 1.1 might require some explanation: The statement is written in a
simple RDF-equivalent notation called N3 [4]. Each element is a URI. Primarily
these serve to identify resources for the purpose of retrieval. In that role they
function as a Uniform Resource Locator (URL) as can be seen in line one: The
subject of the description, which is the ”BLContractMgmt” component, can be
accessed by navigating into the Namespace element called ”Business Apps” to
the Model Element called ”BLContractMgmt” within the current document.

Thus, to use this approach to describe an organization’s own concepts it has
to decide on the types of properties it would like to apply to its models. Then
URIs, keyed off of the organizations Internet domain name, can be assigned to
represent the desired properties3.

3.2 Extraction of RDF Statements from Tagged Values

The extraction service follows this algorithm: Extract each model element, and
see if any Tagged Values exist. If so, convert its name into a URI as follows:
Take as root the relative or absolute URL, describing the location of the model
file. Append as path the model-internal path based on the Namespace of the
Model Element. Append the name of the Model Element. This results in unique
URIs because of the scoping of Model Elements within Namespaces[18–pp. 2-38]:
”The pathname of Namespace or ModelElement names starting from the root
package provides a unique designation for every ModelElement.” The model
element forms the subject of the RDF statement. The predicate is the name of
the associated tagged value. The object is the value of the tagged value. As a
result, RDF statements as defined in section 3.1 are created.

3 Please note that a URI must not link to a web representation. It is a concept used
to uniquely identify resources.
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Our implementation of extraction is a JMI-based service which uses the
Jena[8] framework. We call that service ’Fringe’ because it extracts informa-
tion pointing from the fringes of the UML model to external resources, rather
than at structures within the model.

4 Conclusion

This paper has discussed a framework based on a connector taxonomy to enable
an adequate modeling representation of components and provide a method to
discover conflicts in compositions of those components. The framework is based
on a taxonomy by Mehta. It describes communication and technology related
properties and provides conflict identification based on inference rules. We have
discussed how to integrate such conflict reasoning into the software development
process. To this end, we have shown how the Unified Modeling Language and
the Resource Description Framework can be combined via Tagged Values to
provide a solution to representation problems, without resorting to extension
mechanisms, and without limiting to a specific component platform. As a real
life example, we have modeled the connection of a .Net Serviced Component
to an Enterprise Java Bean in UML and identified inherent conflicts using the
Triple-based framework.

We plan to augment the conflict reasoning framework to suggest solutions
to conflicts based on existing connectors that are registered in our knowledge
base. Furthermore, type checks and behavior checks are to be integrated with
the matchmaking process.
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Abstract. It is a key activity in CBD to identify high-quality components which 
have high cohesion and low coupling. However, component clustering is 
carried out in manual fashion by developers, resulting excessive time 
consumption and generating errors. In this article, we present an 
implementation of a tool which automates a component clustering and 
identification method. We show how we realize a clustering method as a tool 
and explain techniques applied in the implementation. Using the tool, 
component identification can be automated, and one can generate and navigate 
multiple configurations to find the most appropriate one for the project 
effortlessly. 

1   Introduction 

Component-based development (CBD) has been widely accepted as one of the 
representative reuse development paradigm. A component is a basic unit for reuse and 
provides a relatively coarse-grained functionality. A component typically consists of 
several related objects which collaborate to carry out system operations. Hence it is a 
key activity in CBD to identify high-quality components which have high cohesion 
and low coupling [1] [2]. 

Several methods for identifying components have been proposed, but the manual 
application of the methods by developers is time-consuming and prone to generate 
errors. Hence, it is desirable to have tools to automate the process of the methods. 

In this article, we present an implementation of a tool which automates a 
component clustering and identification method. We show how we modified the 
method for the purpose of realizing in a tool and key techniques applied in the 
implementation. 

2   A Method for Clustering Component 

The method that we chose for our implementation is known as one of the systematic 
methods with guidelines  [3], and it consists of four steps as in figure 1. This method 
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Fig. 1. The Overall Process 

assumes that the fundamental artifacts of object-oriented modeling such as use case 
model, object model and dynamic model are available. 
     In this method, three types of relationships are considered for identifying 
components. In steps 1 and 2, functional dependency between use cases is used as the 
fundamental means to cluster related functions. The dependencies are measured with 
four criteria in step1 and related use cases are clustered in step 2. In step 3, 
functionality-to-data relationships expressed in a dynamic model such as sequence 
diagram are taken to assign related classes to candidate components. In step 4, 
dependency or coupling between classes is used to verify and refine the identified 
components. If there are two closely related classes which are separated into two 
components, it is identified and refined in this step 

3   Implementation of the Tool  

We develop the tool on Visual Studio .NET framework using C# language and MS 
Office Access. Hence, the tool runs on .NET framework with Office Access database 
installed. We applied a simplified version of object-oriented method. The tool has 
four modules, shown with «subsystem» stereotype in Figure 2; Initializer, 
Configurator, Custerer, and Navigator. 

 

Fig. 2. Method and Subsystems of Tool 

Initializer and Clusterer directly cover steps of the method, and Configurator and 
Navigator support additional functionalities for clustering in various conditions.  

The Initializer module implements the step 1 of the method. It is to gather raw data 
needed for clustering; actors, use cases, classes, and to set the relationships among 
them. The Configurator module extends the step 1 with a functionality to register 
weight values for the metrics computing functional dependency (FD) and entity 
dependency (ED) and to set various parameters for resolving clustering conflicts. 

The Clusterer module is to compute FD and ED, to cluster use cases into candidate 
components, and to assign classes into the components. Conflict occurrence during 
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automatic clustering is a common problem, and we use the following algorithm to 
resolve the conflicts mechanically. 

… 
// Classify conflict use case and duplicated use cases
For all use cases UCi 

Search conflict components for a use case. 
If the number of conflict components >=  

numOfConf then 
conflictUC.usecaseList = UCj 
conflictUC.conflictComponentsList =  

conflict components. 

add conflictUCList(conflictUC) 
Else if the number of conflict components 

> 1 then 
duplicatedUC.usecase = UCj 
duplicatedUC.conflictComponentsList  

= conflict components.

add duplicatedUCList(duplicatedUC). 
End if 

Loop 
// Discard subset of conflict component list. 
.. 
// Make new component from conflict component list
. 
.. 
// Assign duplicated use case 
For i = 1 to duplicatedUCList.cnt 

// Form resolving use case conflict  
// for In-house Component 
AssignConflictUsecase( duplicateUCList[i].usecase, 

duplicateUCList[i].candiateComponentList) 
Loop 

The Navigator module is to display multiple configurations of component set, and 
to let the user browse them and select the most appropriate configuration. The module 
computes and displays various measures about multiple component sets, so that users 
can made more logical decisions based on these measures. 

4   Case Study with Rental Management 

The rental management system is for managing rental operations in various rental-
related businesses such as library, movie rental, and car rental. There is a good degree 
of commonality among these applications, and we were able to identify several 
components for this commonality.Our object-oriented analysis model only for entity 
layer includes 33 use cases and 6 entity classes. Figure 3 is a snapshot of Initializer 
showing the raw data of these use cases and classes entered. 

 

 Fig. 3. Initialization 
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After Configurator gets parameters for resolving conflicts, Cluster computes 
automatically FD and ED and derives candidate components, as shown on the left-
hand side of figure 4. The tool generates multiple configurations of component sets. 
Finally, the Navigator plots economic area graphs as shown in figure 4. It shows two 
relationships; one between the number of components and the value of ‘t’ threshold, 
and the other between the granularity of components and the value of ‘t’. Using this 
information, user chooses a component set that best satisfies the requirement. 

 

Fig. 4. Computation by Clusterer and Analysis by Navigator 

5   Concluding Remarks 

It is an essential activity in CBD to identify high-quality components which have high 
cohesion and low coupling. However, component clustering is carried out in manual 
fashion by developers, resulting excessive time consumption and generating errors. In 
this article, we presented an implementation of a tool which automates a component 
clustering and identification method. We showed how we realized a clustering 
method as a tool and explained techniques applied in the implementation. Using the 
tool, component identification can be automated, and one can generate and navigate 
multiple configurations to find the most appropriate one for the project effortlessly. 
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Abstract. Feature-driven variability is viewed as an instance of multi-
dimensional separation of concerns. We argue that feature variation con-
cerns can be presented as pattern-like entities - called feature variation
patterns - cross-cutting heterogeneous artifacts. We show that a feature
variation pattern, covering a wide range of artifact types from a feature
model to implementation, can be used to manage feature-driven vari-
ability in a software development process. A prototype tool environment
has been developed to demonstrate the idea, supporting the specifica-
tion and use of heterogeneous feature variation patterns. We illustrate
the idea with a small example taken from J2EE, and further study the
practical applicability of the approach in an industrial product-line.

1 Introduction

The software engineering community is becoming increasingly aware of the na-
ture of software systems as multi-dimensionally structured collections of arti-
facts: no single structuring principle can cover all the possible concerns of the
stakeholders of a software system. This observation has far-reaching implica-
tions on how we construct, understand and manage software systems. Multi-
dimensional approaches to software engineering have been the target of active
research for a long time [1, 2, 3].

In the context of software product-lines [4, 5], one of the central concerns
is variability management. The aim of variability management is to change,
customize or configure a software system for use in a particular context [6].
In feature-driven variability management, variations of software products are
expressed in terms of feature models (e.g. [7]). Selections of certain variants in
a feature model are reflected in the design and implementation of the resulting
product. Thus, a feature and its variation points constitute a slice of the entire
system, cross-cutting various system artifacts ranging from feature models to
implementation. Although variability management has been recognized as one
of the key issues of software product-lines, its tool support lacks systematic
approaches: most tools used in the industry are specific to a particular domain or
product-line platform. Typically, automated support for variability management
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is based on product specifications given in, say, XML, used to generate the actual
product by a proprietary tool.

A particular challenge for more systematic tool support for variability man-
agement is the fact that variability concerns span different kinds of artifacts and
different phases of the development process. Even if we forget informal docu-
ments, the artifacts involved in variability concerns may include formal require-
ment specifications, design models, Java source files, XML files, scripts, make
files, etc. The languages these artifacts are expressed in vary from graphical nota-
tions like UML [8] to various textual languages. Within UML, so-called profiles
can be further used to create specialized modeling languages as extensions of
UML for various purposes. Thus, we need a tool concept for variability concerns
which is easily adapted to any reasonable artifact format.

In our previous work [9, 10, 11, 12] we have studied how a generic pattern con-
cept can be used as a basis of tool support for various cross-cutting concerns like
framework’s specialization interfaces, maintenance concerns, and comprehension
concerns within artifacts of a particular kind (e.g. UML design models or Java
source code files). Here the term pattern 1 refers to a specification of a collection
of related software entities capturing a concern in a software system; a pattern
consists of roles which are bound to the concrete entities.

In this paper we generalize the pattern concept to allow multiple artifact types
within the same pattern, thus satisfying the needs of feature variation patterns.
We argue that the pattern concept is particularly amenable to present such
heterogeneous patterns, since the basic pattern mechanisms are independent of
the representation format of the artifacts, as long as there is a way to bind
certain elements appearing in the artifacts to the roles of the pattern. This is in
contrast to traditional aspects [13] which are presented using language-dependent
mechanisms. The main contributions of this paper are the following:

– An approach to provide tool support for representing concerns within hetero-
geneous artifact types covering different phases of the development process

– The concept of a feature variation pattern as a model for tool-supported
feature-driven variability management

– A prototype tool environment allowing the specification and use of feature
variation patterns, together with early experiments

We proceed as follows. In the next section we briefly sketch the main idea.
In Section 3, we explain the basic structuring device our approach is based on,
the pattern concept. In Section 4, we give an overview of our current prototype
environment supporting heterogeneous patterns. In Section 5, we illustrate our
approach with an example concerning feature variation management in the J2EE
environment. In Section 6, we present a small case study where we have applied
the idea of feature variation patterns to a product-line provided by our industrial
partner. Related areas in software engineering are discussed in Section 7. Finally,
we summarize our work in Section 8.

1 Our pattern concept has little to do with, say, design patterns: a pattern is a low-level
mechanism that can be used to represent a design pattern or some other concern.
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2 Basic Idea

We propose that feature variability can be managed using an artifact-neutral
structuring device, a feature variation pattern. We will explain the pattern con-
cept in more detail in the next section. Basically, a pattern consists of roles which
are bound to actual system elements located in various artifacts; the pattern de-
fines the required relationships between the elements bound to its roles. A feature
variation pattern collects together elements relevant for realizing the anticipated
variability of a feature across multiple artifacts. Ranging from requirements de-
scriptions to actual implementation, these artifacts may be created in different
phases of the software development process, and manipulated by different tools.

A single tool is used to manage the patterns, communicating with artifact-
specific tools through their APIs. The existence of a feature variation pattern
makes it possible for the tool to guide the product developer in exploiting the
variability provided by a product-line platform, to assist in the generation of
product-specific parts of the system, to make sure that the product has been
developed according to the assumptions of the platform, to trace design-level
variability support back to requirements, and to extract a system slice repre-
senting a single feature variation concern. This paper focuses on the two first
issues. The general idea of the tool concept is illustrated in Figure 1.

Our approach is conservative in the sense that we do not make assumptions
about languages or design methods: the only thing we assume is that the tools
used to process the relevant system artifacts offer an API which allows the pat-
tern tool to access the elements of those artifacts and to catch certain events
(e.g. when an artifact has been modified). This assumption holds for many mod-
ern tools; in this work we have used Rational Rose for UML models and Eclipse
for Java and XML. The artifacts can be freely edited through their dedicated
tools: if an artifact is modified, the worst that can happen is that some bindings
in an existing pattern become invalid or certain constraints defined by the pat-
tern are violated. In this case, the pattern tool warns the developer about the
inconsistencies and proposes corrective actions. It is then up to the developer to
either correct the situation or ignore the warning. A prototype tool environment
is presented in more detail in Section 4.

Req UML Java XML

Req
Tool

UML
Tool

Java
Tool

XML
Tool

Pattern
Tool

Roles

Pattern Dependencies

Bindings

Fig. 1. The pattern-based approach to managing feature variability
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3 Patterns

We view a feature variation pattern as an organized collection of software el-
ements capturing any concern in a software system related to the variation of
a particular feature. The target system could be a software product-line, or a
single product with anticipated needs for feature variation.

Figure 2 depicts a conceptual model in UML for (feature variation) patterns.
A pattern is a collection of hierarchically organized roles. A pattern is instanti-
ated in a particular context by binding the roles to certain elements of concrete
artifacts. Each role can be associated with a set of constraints expressing condi-
tions that must be satisfied by the element bound to a role.

Artifacts contain models which can be expressed in different notations follow-
ing well-defined metamodels. Here we regard any formal presentation describing
some system properties as a model, including, say, UML models and source code.
A metamodel is assumed to define a containment relationship between the model
elements. In any binding, the containment relationships of the bound elements
must respect the hierarchy of the roles.

The metamodels of the notations used in a model define properties for the
model elements that can be checked by constraints. Constraints may refer to
the elements bound to other roles, implying dependencies between the roles. For
example, in a pattern which covers UML models, a constraint of an association
role may require that the association bound to this role must appear between
the classes bound to certain class roles, thus implying a dependency from the
association role to the two class roles.

A role is associated with a type, which determines the kind of model elements
that can be bound to the role. A role type typically corresponds to a metaclass
in the metamodel of a given notation. As indicated in the lower part of Figure 2,
a pattern can be associated with multiple sets of role types (for example UML,
Java, etc). Each set groups together related role types. For example, there is a set

Role

Pattern

Constraint

Model Element

1

is bound to*

Dependency

imposes

target
source

0..1
parent

child

Type

UML Class

Artifacts

UML

UML Association

Java

multiplicity
participates in*

1

Artifact

Model

Metamodel
is described by

1

*

*

*
*

*

*

*

*

1 *

Java Class Java Package ... Visibility Inheritance... ... ...

is instance of

Fig. 2. Conceptual model for feature variation patterns
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of role types for representing UML model elements. In this paper, we use patterns
with role types covering a subset of UML (for representing feature models and
design models), Java (for representing the actual implementation), and general
text (for representing deployment descriptors). Each set of role types can be
associated with specialized constraints applicable only for the roles in that set.
For example, a Visibility constraint checks the visibility option of classes and
their members in Java.

A multiplicity is defined for each role. The multiplicity of a role gives the lower
and upper limits for the number of elements playing the role in an instantiation
of the pattern. For example, if a class role has multiplicity [0..1], the class is
optional in the pattern, because the lower limit is 0.

4 A Prototype Environment - MADE

Our experimental environment supporting feature variability management is the
result of the integration of several existing tools. Eclipse [14] is used as a platform
for JavaFrames [9] that implements the previously described generic pattern
concept for Java role types. Eclipse acts also as a Java IDE in our work. The
pattern engine of JavaFrames has been lately exploited in the MADE tool for
creating a pattern-driven UML modeling environment [12]. This has been done
by adding UML specific role types and integrating the resulting UML pattern
tool with Rational Rose [15]. We have further extended the pattern tool with
simple text file role types, allowing text files or their tagged elements to be bound
to the roles as well. Thus, we can bind the roles to, say, XML files or items.

The MADE tool transforms a partially bound pattern into a task list. This is
done by generating a task for each unbound role that can be bound in the current
situation, taking into account the dependencies and multiplicities of roles. By
performing a task, the designer effectively binds a role to an element. In order to
use patterns as a generative mechanism (as in this paper), a default element can
be defined for every role. If a role with a default element specification is to be
bound during the pattern instantiation process, the binding can be carried out
by first generating the default element according to the specification, and then
binding the role to this element. The pattern engine updates the task list after
a task has been performed, usually creating new tasks. When updating the task
list, the pattern engine also checks that the constraints of the roles are satisfied,
and generates corrective tasks if this is not the case.

A main principle in the design of our environment has been avoiding any
kind of compulsive working mode of the designer. The existence of patterns does
not prevent normal editing of, say, UML models or Java code; the purpose of
the patterns is to offer additional support rather than a strait-jacket. If some
constraint of a pattern bound to an element (or the binding itself) is broken as a
result of an editing action, the tool generates immediately a new task to repair
the broken constraint or rebind the role. In many cases the tool can even offer
an automated repairing option.
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5 Illustrative Example: Managing Persistence in J2EE

We illustrate the idea of feature variation patterns with a simple J2EE applica-
tion. A typical J2EE application makes use of a persistent data storage which
can be realized by different database products. We assume that the developers
of the application want to make it easy to select the most suitable database
solution for different customers. Thus, the possible variations of the database
solution are specified in the feature model, and the design is given in such a way
that all the desired variations can be easily achieved.

Assuming bean-managed persistence, the bean should be able to decide for
optimization reasons which data source implementation to use. After the right
implementation has been established, the bean can rely on a standard interface
(DAO, Data Access Object) implemented by all the different data sources. There
are two common solutions to select a data source implementation. The first is
to hardcode the name of the implementation class in a specific method in the
bean. When the data source changes, the implementation of that method should
be changed so that it would return the proper implementation class. Another
solution is to store the name of the implementation class in the deployment
descriptor of the bean, as an environment variable. The bean decides at run-time
which data source to use by looking up the value of this environment variable.

In both techniques, either the Java code or the deployment descriptor should
change according to the data source selected. However, even if the developer
decides to hardcode the implementation class in the bean code, storing the in-
formation of the used data source in the deployment descriptor might serve other
purposes such as application documentation. In addition, the design model of
the application should change in the sense that a class corresponding to the
selected data source is added to the model filling the variation point.

5.1 Representing Database Selection as a Feature Variation
Pattern

The above situation can be described using a feature variation pattern. The
pattern has roles representing concrete elements at four abstraction levels: fea-
ture model, design model, Java source code, and deployment descriptor (XML).
The pattern is given using a dedicated editor in MADE; however, we illustrate
the pattern in Figure 3 with a dependency graph. The four different artifact
types are represented by circular shapes. Roles are denoted by rounded rectan-
gles, with role type marks (<<role type>>). Prebound roles are shaded. Role
dependencies are drawn as broken arrows, while containment relationships are
presented with diamond edges.

In the feature model part, there is a role named ’ConcreteDatasource’. This
role represents the data source variant to be used. In the design model part, the
UML class role named ’BeanDAOImplementation’ stands for the model element
indicating the proper DAO implementation. This role should be bound to a UML
class in the application design model. Role ’Implementation’ is used to reflect
the data source decision at the code level. This role should be bound to a Java
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Fig. 3. Pattern role diagram

code fragment that specifies the proper DAO Java implementation. Furthermore,
there is a role for storing the data source decision in the deployment descriptor
of the bean. This role is named ’Datasource’ and should be bound to a text
fragment providing the right descriptor XML tags. All these roles depend on the
database variant and are bound during the specialization process.

In addition to these roles, the pattern defines prebound roles specifying the
context of the above roles. The ’DeploymentDescriptor’ role, for instance, is
bound to the deployment descriptor file where the generated XML text frag-
ment should be inserted. Similarly, the Java class role ’BeanImplementation’
represents the bean implementation class where the concrete DAO implementa-
tion should be registered.

There is a dependency from the four roles ’Datasource’, ’Implementation’,
’BeanDAOJavaImpl’, and ’BeanDAOImplementation’ to ’ConcreteDatasource’
since the concrete elements bound to these four roles depend on the chosen data
source implementation. The pattern tool generates the tasks following the partial
order defined by the dependency relationships of the roles.

The actual pattern specification defines a set of tool-related properties for
each role such as the task prompt, an informal description of the task (shown
to the user together with the task prompt), and the possible default element
generated prior to binding. The table in Figure 3 illustrates how these properties
of the roles are specified in MADE. The table presents the properties of role
’BeanDAOImplementation’. Note that the specifications refer to the names of
the elements bound to other roles using the < # : ... > notation, an expression
of a simple scripting language used in our tool.

Due to such references, the values of these textual properties of the role are
adapted to the current binding situation; for example, the task prompt and task
description always use the application-specific names. In this case the default
element is a template for the UML class of the proper DAO implementation.
The template gives the name of the DAO implementation class and refers to
the concrete name of the DAO class. In addition to role properties, the table in
Figure 3 includes an example inheritance constraint which is used to check the
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Fig. 4. Pattern binding steps

generalization/specialization relationship between the UML class bound to role
’BeanDAOImplementation’ and the UML class bound to role ’BeanDAO’.

5.2 Using the Pattern

Figure 4 shows a scenario for applying the pattern. The MADE tool transforms
an unbound role into a task, shown as a textual prompt. The execution of the
task results in binding the role. The figure includes four tasks and their outcome.

The scenario starts from the left upper corner. First, a task prompt asks the
user to select the data source to be used. The user is shown the list of available
data sources: MySQL, Oracle, and PostgreSQL (1). The user decides to use the
Oracle database. Next, a new task for providing a UML class named ’Bean-
DAO Oracle Impl’ is shown (2). The UML class stands for the implementation
class of the DAO interface. Note that the environment adapts the task descrip-
tion to the context of the user: the selected database name ’Oracle’ is used in the
default name of the UML class (3). The next task is to register the DAO Java
implementation class to be used by the bean (4). A Java code fragment is then
generated (5). The code creates a new instance of class ’BeanDAO Oracle Impl’
and assigns it to the bean field holding the DAO object. Finally, the last task is to
store the name of the DAO implementation class in the deployment descriptor of
the bean (6). For this purpose, a new environment entry ’DAO CLASS NAME’
is generated. The value of the entry is ’BeanDAO Oracle Impl’ (7).

Figure 5 shows an overall view of our environment after the tasks described
above have been carried out. In the upper half of the screen, Rose displays the
feature model (on the left) and the design model (on the right) as UML class
diagrams. In the lower half of the screen, the Eclipse Java environment displays



Managing Variability Using Heterogeneous Feature Variation Patterns 153

Bindings

Feature Model

Design Model

XML DataJava Code

Pattern
Description

Architectures/
Patterns

Fig. 5. A prototype environment

two textual editors (above) and the integrated pattern tool (below). The latter
is further divided into three panes: the pattern view showing the roles in a
containment tree (left), the task view (upper) and the instruction view (lower).
The textual editors are for Java code and for XML.

When a pattern is selected in the pattern view, the task view displays the
tasks generated by that pattern. In Figure 5, however, no doable tasks are shown
since the pattern is fully bound. Instead, the view reveals a description of a task
(data source selection) that has already been carried out. The outcome of every
performed task can be retrieved in this way at any time. The bindings, visualized
with the arrows in Figure 5, show how a pattern acts as a connecting artifact
between different model levels.

6 Case Study - Nokia GUI Platform

6.1 Target System

Nokia produces a family of NMS (Network Management System) and EM (El-
ement Manager) applications, which are software systems used to manage net-
works and network elements. For this purpose, the company has developed a
Java GUI (Graphical User Interface) platform to support the implementation of
the GUI parts for the variants of this product family. The platform is used as an
object-oriented Java framework, in which the application is created by deriving
new subclasses and by using the components and services of the framework.
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The platform provides a number of services useful for GUI applications. There
are services for system logging, online help, user authentication, product inter-
nationalization, clipboard usage, CORBA-based communication, and licensing.
Depending on the environment used, each service may have different implemen-
tations. Applications, built on top of the GUI platform, get a reference to the
proper service implementation from a registry file. It is essential that product de-
velopers register the right service implementation. Due to the confidential nature
of the platform, detailed descriptions about its architecture are omitted.

6.2 Experiment

The goal of the case study was threefold: identifying variability in the GUI
platform, expressing the identified variation points in terms of feature models,
and using our pattern concept and prototype tool to achieve an environment
where variability is managed across multiple artifacts.

Our first step was to analyze the platform documentation and interview sev-
eral of the platform users. As a result, we have identified a number of variability
issues regarding how platform services are being used. The next step was to
construct feature models realizing the variability issues we have identified. Fig-
ure 6 depicts, in lighter color, a feature model representing the main services
provided by the GUI platform. All services are optional. It is up to the prod-
uct developer to decide which services to use. The ’I18n’ service stands for the
internationalization service.

As a third step, we have developed a system of feature variation patterns
for expressing which platform services are used and which service implementa-
tions are considered. Because a service is regarded as a separate concern in the
platform, a pattern (or a set of related patterns) is used to represent that ser-
vice. The patterns cover four abstraction levels: the feature model representing
the services, the design model of the product, the Java implementation of the
application, and the product service registry files.

When instantiating the patterns, developers decide which services the appli-
cation should incorporate and which service implementation to use. If a service
is selected, MADE uses the corresponding pattern to generate tasks for regis-
tering the service in the application service registry. Furthermore, the pattern
ensures that the right service implementation is added to the design model of
the application, that the Java implementation exists, and that the right (and
only one per service) service implementation is registered to the property files.

Each of the services shown in Figure 6 in lighter color can be further repre-
sented by its own feature models. The figure, for example, depicts, in darker color,
a feature model specifying how application GUI components can use the on-line
help service. First, the variant ’User Event’ indicates that the call resulted from
a user request whereas ’System Event’ indicates that the call originated from
the application. GUI components can support either event types but not both
at the same time. Second, developers must specify what type of help service is
requested. There are five variants for such service type. ’Contents’, for example
indicates that the target of the request is a table of contents whereas ’Search’
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Fig. 6. Feature models for platform services and online help service
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Fig. 7. Role diagram for the OnlineHelp pattern

indicates that the target of the request is a search page. Similarly, the choice of
the service type is exclusive.

A feature variation pattern is used for representing the feature model for on-
line help. The pattern is used to generate tasks for selecting the GUI components
which incorporate a help service and the help event and service types associated
with those components. In addition, it ensures that only one variant is selected
and that it is correctly represented in the Java implementation. Furthermore,
the pattern is used to associate, in the design model, the help service with the
selected GUI components.

The role structure of the pattern is shown in Figure 7. The two roles named
’ConcreteEventType’ and ’ConcreteServiceType’ represent the event and service
type variants to be used. In the design model, role ’GUIComponent’ should be
bound to a UML class representing the GUI components associated with the
help service. The ’+’ symbol in front of the role name stands for the multiplicity
value meaning, in this case, that there can be any number of GUI components
(UML classes) bound to the role. At the implementation level, the pattern uses
the variants in the feature model to generate a Java code fragment for registering
the proper help service to the selected GUI components. This is illustrated by
role ’Implementation’. The code fragment is inserted in an initialization method
of the application.
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6.3 Experiences

As explained earlier the goals of the case study have been to study the expressive
power of our formalism and the applicability of our approach in an industrial
setting. Our first challenge has been to dig up the feature models from the
platform documentation, where the documents were not structured according to
our methodology. Another problem, during this phase of the experiment, was
the fact that the platform is used by different groups in the company having
different interests towards the product line. Thus, we had to interview each of
these parties. Furthermore, the platform comes with different versions making
it harder to identify the variation points.

The variability aspects of the platform were mostly specified in Word docu-
ments. An attractive option would have been to link the relevant parts of these
documents to the feature variation patterns, rather than (or in addition to)
feature models. However, this would require different structuring of the Word
documents and new role types covering elements in these documents. In the case
study, we have specified all platform services as optional features, even though
services such as internationalization or online help are in practice required. At
this stage, we could conveniently present a number of variation points in the plat-
form with a set of heterogeneous patterns. However, we still need to construct
more patterns in order to cover variability in other platform components.

7 Related Approaches

Feature Variability Management
One of the key issues in software product lines is variability management. A
product line architecture makes it easier to manage the product family as it
promotes the variation between different products, i.e., the use of variants and
variation points [16]. The software community has taken different approaches
to variability management. Our methodology is based on feature models [7].
Other methodologies include architecture description languages (ADLs) [17] and
different XML-based program specification [18].

Framed aspects [19] are another approach for representing features in
software product lines. The purpose of the method is to support evolution in
product lines rather than the development of products. First, aspects are used to
encapsulate tangled features. Then, frames are used to provide parameterization
and reconfiguration support for the features. Compared to our approach, framed
aspects are applied at the implementation level only.

Model-Driven Engineering
MDD (Model-Driven Development) [20] promotes an approach where models of
the same system are usually derived from each other leading to better alignment
between the models. MDA (Model-Driven Architecture) [21] is a recent initiative
by OMG for supporting MDD principles. MDA defines three views of a system:
a Computation Independent Model (CIM), which is a representation of a system
from a business viewpoint, a Platform Independent Model (PIM), which is a rep-
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resentation of a system ignoring platform specific details, and Platform Specific
Model (PSM), which is a model of a system that covers both platform indepen-
dent information and details about a specific platform. Compared to MDA, our
feature models correspond to CIM whereas other model kinds can be viewed
as PSM. In this paper we do not discuss support for PIM. An MDA-oriented
approach, using our pattern concept, is presented in [22].

Batory et al. take an approach to feature oriented programming where
models are treated as a series of layered refinements [23]. Features are composed
together in a step-wise refinement fashion to form complex models. Models
can be programs or other non-code representations. To support their concepts,
the authors have developed a number of tools for feature composition, called
AHEAD toolset. The toolset provides similar functions to those of MADE.
MADE environment solves two problems not otherwise addressed in [23]:
tracing features across different artifacts and checking the validity of models.

Separation of Concerns Across Artifacts
The idea of representing concerns within and across different artifacts has been
addressed in the work on multi-dimensional separation of concerns [2]. The
authors present a model for encapsulating concerns using so-called hyperslices.
These are entities independent of any artifact formalism. Our heterogeneous
pattern concept can be considered as a concrete realization of the hyperslice
concept. Other concepts such as subjects [24], aspects [1], and viewpoints
[25] also resemble our patterns. Subjects are class hierarchies representing
a particular view point of a domain model. Thus subjects deal only with
object-oriented artifacts. Aspects, on the other hand, have been mostly used to
represent concerns at the programming level. Viewpoints, in turn, are used to
represent developers’ views at the requirements level. Different viewpoints can
be described using different notations. Compared to these concepts, our pattern
approach is not bound to a specific artifact type but can be used to capture
concerns cross-cutting different phases of the development process.

Tool Support for Traceability
The ability to track relationships between artifacts has been a central aim in
requirements engineering [26]. Rational RequisitePro [27] is a market-leading
requirement management tool. In RequisitePro, use cases are written as Word
documents which are stored into a relational database. Use case diagrams can
be associated with use case documents; sequence diagrams implementing the use
cases can be linked to the use case diagrams, and class diagrams can be linked
to the sequence diagrams. A related approach has been proposed to achieve
traceability in software product families [28], linking requirements, architecture,
components, and source code. In both works, traceability is based mainly on
explicitly created links. In our approach there are no explicit links between the
artifacts themselves, but instead we specify a particular concern as a pattern
and bind the roles of the pattern to certain elements of the artifacts.
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8 Concluding Remarks

We have developed a prototype environment supporting the representation of
concerns cross-cutting not only components but also various artifacts produced
in different phases of a software development process. Our first experiences with
the environment are encouraging: we could conveniently present variation points
in a product-line with a heterogeneous pattern covering multiple artifact types.
Using existing tool technology for pattern-driven software development, we could
achieve an environment where the pattern guides variation management from
feature model to actual implementation.

However, feature variation management is just one example of the potential
benefits of our environment. The main point is that the pattern stores the in-
formation of the existence of a concern among the artifacts. This information
can be exploited in many ways. For example, it is often useful simply to gener-
ate a single view where all the fragments related to a particular concern can be
browsed, a kind of concern visualizer. This kind of support is readily available
in our tool. Heterogeneous patterns can be used for tracing as well: the designer
can follow the dependencies between the roles of a pattern and find out why, for
example, a particular class has been introduced in the design model.

In order to support new representation formats of artifacts, we are working
at transforming the tool into a framework for constructing new role types. Other
future directions include enhancing the alignment and traceability between the
various artifact types, and proceeding with the case studies provided by our
industrial partners.
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Abstract. Execution environments are used as specifications for spe-
cialization of input-output programs in the derivation of product lines.
These environments, formalized as color-blind I/O-alternating transition
systems, are tolerant to mutations in a given program’s outputs. Exe-
cution environments enable new compiler optimizations, vastly exceed-
ing usual reductions. We propose a notion of context-dependent refine-
ment for I/O-alternating transition systems, which supports composition
and hierarchical reuse. The framework is demonstrated by discussing
adaptations to realistic design languages and by presenting an example
of a product line.

1 Introduction

Modern software becomes increasingly customizable. This especially affects em-
bedded software, since embedded devices are typically produced in multiple
variants. Our long-term goal is to provide a theoretical foundation, tools, and
methodology for maintaining a family of software for reactive synchronous sys-
tems. In the present work we focus on the theoretical basis for specifying cor-
rectness of transformations used in automatic derivation of family members.
A single general model is used as a description of all available functionality.

Hierarchically organized specifications of environments define the family mem-
bers by restricting input and output abilities of the general model. I/O alter-
nating transition systems are used to model the semantics of both environments
and the general model. Our environments are novel in that they not only restrict
possible input traces, but also exhibit inabilities in distinguishing output traces.
Some outputs are indistinguishable for a given environment in the same way as a
color-blind person cannot distinguish some colors. Color-blindness can be used to
model surprisingly many aspects of realistic environments (for example causality
between the firing and timing-out of a stop-watch, boolean memory flags, or the
use of a single actuator in place of two). The general model can be transformed
according to the behavior of a specific environment, and individually optimized
for that particular environment and purpose.
Section 2 motivates our work using a popular reactive language. I/O alternat-

ing transition systems are introduced in section 3, color-blindness in section 4,
and composition operators in section 5. Remaining sections focus on practical
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Fig. 1. Initial state/event model C0
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Fig. 2. The specialized model C1

2 State/Event Systems

Let Event and Action be finite sets of environment stimuli and system outputs
respectively. A state/event machine Mi = (Si, s

0
i , Ti) is a triple comprising a set

of local states Si, the initial state s0
i ∈ Si and a set of syntactic transitions Ti.

A state/event system consists of n machinesM = {M1, . . . , Mn} with mutually
disjoint sets of states. A global state of the system is a tuple of local states:
State = S1×S2×· · ·×Sn. Transitions in Ti ⊆ Si ×Event ×Guard ×Action×Si

describe reactions undertaken byMi in reply to a given event, in a given local and
global state. Global states are described by transition guards: simple Boolean
expressions over activity of states, which can be evaluated in any given global
state, giving rise to a natural satisfaction relation � ⊆ State ×Guard .
State/event systems are input-enabled : the local transition relation includes

not only the syntactical transitions but also self loops for all configurations for
which reactions are not specified. We write s e o

−−−→i s′i, meaning that the reaction
of machine Mi to arrival of event e in global state s is, to change the local state
to s′i and generate the set of actions o:

s
e {a}
−−−−−→i s′i iff ∃g. (πi(s), e, g, a, s′i) ∈ Ti ∧ s � g

s e ∅
−−−→i πi(s) otherwise (where πi(s) denotes the i’th projection of s)

The global transition relation T ⊆ State ×Event ×P(Action)× State subsumes
all local reactions: s e o

−−−→ s′ ⇔def ∀i.s e oi−−−−→i πi(s′) where o = o1 ∪ . . . ∪ on.

Fig. 1 depicts a state/event model C0 of an alarm clock. The essentials of the
alarm clock are handled by the timer machine. If the timer is in the armed state
and the hardware sends an alarm time-out event (alarmTO) then the beeper is
turned on. The user can postpone the alarm by pressing the snooze button (event
snooze), which allows him to continue sleeping until the snooze timer times out
(snoozeTO). Releasing the button sends a snoozeR event to the model. The
backlight machine controls the built-in lamps. Only a faint light is displayed in
the glowing state, such that the display can be read in the dark. The full light is
on while the alarm is beeping or the snooze button is being pressed. The sensor
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applications: adaptation to realistic design languages (section 6) and an example
of a product line (section 7). Sections 8-9 refer the related work and conclude.



We would like to support automatic derivation of variants for discrete control
systems like the alarm clock. One such variant C1, which does not activate the
backlight in reaction to the snooze button, is depicted on Fig. 2. Note the sim-
plification of guards and the two new transitions in the backlight state machine.
What is the relation between the two models? Both models are indistinguishable
for some execution environment, namely the one, which becomes blind for the
lightOn action immediately after producing the snooze event.

3 I/O Alternating Transition Systems

The reactive synchronous paradigm seems to be predominant in development of
embedded software. The state/event systems of the previous section [17, 11] are
just an example chosen from a multitude of available formalisms, like Esterel [2],
statecharts [7], or Java Card [24]. A common assumption about these systems is
that they react to any input event at any time. Each reaction occurs infinitely
fast, so that the system is always able to observe the arrival of the next event.
Such semantics is conveniently captured by I/O-alternating transition systems:

Definition 1. An I/O-alternating transition system, or IOATS, is a tuple (In,
Out ,Gen,Obs , !

−→,
?
−→, s0), where In and Out are sets of inputs and outputs,

Gen and Obs are finite sets of generators and observers,
!
−→ ⊆ Gen ×Out ×Obs is a generation relation, ?

−→ ⊆ Obs × In ×Gen is an
observation relation, and s0 ∈ Gen ∪Obs is the initial state.

We have distinguished two transition relations: !
−→ is a generation relation ad-

vancing from a generator to an observer, while ?
−→ is an observation relation

advancing from an observer to a generator. This alternation is inherent to the
way synchronous systems operate. We write S

o!
−−→s, instead of (S, o, s) ∈ !

−→ and
s

i?
−−→S instead of (s, i, S) ∈ ?

−→. Small letters are used for observers and capital
letters for generators. In addition observers are required to be input-enabled:

∀s ∈ Obs. ∀i ∈ In. ∃S, o, s′. s
i?
−−→S ∧ S

o!
−−→s′ (1)

With these assumptions we can propose a simulation based refinement relation:

Definition 2. Let S1 = (In ,Out,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1) and S2 = (In,Out ,

Gen2,Obs2,
!
−→2,

?
−→2, s

0
2) be IOATSs. A binary relation R ∈ Obs1 ×Obs2 con-

stitutes a simulation on observers of S1 and S2 iff (s1, s2) ∈ R implies that:

whenever s1
i?
−−→S1∧S1

o!
−−→s′1 then also s2

i?
−−→S2∧S2

o!
−−→s′2 and (s′1, s

′
2) ∈ R .

Let R be the largest of such relations ordered by inclusion. An observer s2 sim-
ulates an observer s1, written s1�s2, iff (s1, s2) ∈ R. Finally S2 simulates S1,
written S1�S2, iff s0

1�s0
2.

We distinguish the actual systems from the environments, in which they oper-
ate. Environments are free in choice of inputs, while systems independently deter-
mine the outputs. A system S = (InS ,OutS ,GenS ,ObsS ,

!
−→S ,

?
−→S , sS) oper-
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machine models the current external light level. Proper events (dark, bright) are
generated by the sensor driver whenever the ambient light passes some threshold.



Systems always begin execution in an observer state, so sS ∈ ObsS . Environ-
ments always begin execution in a generator state, so sE ∈ GenE . System S is
compatible with the environment E if InS = OutE and OutS = InE . Composi-
tion of a system S with a compatible environment E is defined in the usual way,
by synchronization on identical labels (and complimentary transition types).
The initial observer of the system is composed with the initial generator of the
environment. Due to the compatibility requirement and input-enabledness of ob-
servers, the closed system is able to advance for any input that can be generated
by the environment. For a closed system it is known, which of its states cannot
be exercised by the environment. A given environment may not be able to dis-
tinguish two systems from each other, even though they are not identical. We
capture this with a notion of relativized simulation:

Definition 3. Consider three IOATSs: an environment E = (Out , In,Gen,Obs ,
!
−→,

?
−→, E0) and two systems: S1 = (In ,Out,Gen1,Obs1,

!
−→1,

?
−→1, s

0
1) and S2 =

(In,Out ,Gen2,Obs2,
!
−→2,

?
−→2, s

0
2). A Gen-indexed family of binary relations

R:Gen→P(Obs1×Obs2) is a relativized simulation iff (s1, s2) ∈ RE implies that:

whenever E
i!
−−→e ∧ e

o?
−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o!
−−→s′1

then also s2
i?
−−→S2 ∧ S2

o!
−−→s′2 and (s′1, s

′
2) ∈ RE′ .

Let R be the largest of such families ordered by component-wise inclusion. We
say that an observer s2 simulates an observer s1 in the generator E, written
s1�Es2, iff (s1, s2) ∈ RE. The system S2 simulates S1 in the context of E, written
S1�ES2, iff s0

1�E0s0
2.

The choice of simulation as the preorder underlying our methodology is some-
what arbitrary. Most other behavioral preorders of the linear-time/branching-
time hierarchy of van Glabbeek [6] would be adequate, such as testing preorder,
2/3 bisimulation (ready simulation) and bisimulation. What is important is that
the particular preorder preserves properties of interest and that the preorder
may be relativized with respect to environmental restrictions.

4 Color- lind I/O- lternating Transition Systems

In the previous section we were able to state that two systems are in a refinement
relation with respect to a certain context if this context cannot activate their in-
compatible parts. However, in industrial development, it often happens that the
environment cannot distinguish two systems, not because it makes incompatible
parts unreachable, but because its ability to distinguish the different outputs it
observes might be limited depending on its actual state. A variant of the alarm
clock may have only one physical lamp installed, which should be lit whenever
the backlight is on or glowing. The environment, being a model of the hard-
ware in this case, will treat the two outputs glow and lightOn as being identical,
allowing for powerful optimizations when generating code for this specific type

B
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ates embedded in some environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , sE).

A



of hardware. For this particular example, the distinguishing capability of the
environment is clearly static and hence the specification of code optimization
is realizable using simple process algebraic operations such as relabelling and
hiding. However, environmental restrictions can be dynamically changing as was
the case for the environment leading to the specialized model C1 (Fig. 2). Here
the environment only becomes blind for the lightOn action after the production
of the snooze event. To give a proper treatment of such situations we relax the
equivalence of labels in relativized simulation and label observation transitions
of environments with sets of inputs called observation classes. Such transitions
can be taken in the presence of any of the inputs in their observation class.

Definition 4. A color-blind IOATS is a tuple E = (In,Out ,Gen,Obs , !
−→,

?
−→, E0), where In and Out are sets of inputs and outputs, Gen and Obs are
finite sets of generators and color-blind observers, !

−→ ⊆ Gen ×Out ×Obs is a
generation relation, ?

−→ ⊆ Obs ×P(In) ×Gen is a color-blind observation rela-
tion, and E0 ∈ Gen is the initial state.

A color-blind environment E = (InE ,OutE ,GenE ,ObsE ,
!
−→E ,

?
−→E , E) and a

usual IOATS S = (InS ,OutS ,GenS ,ObsS ,
!
−→S ,

?
−→S , s) are compatible if their

signatures match: InE = OutS ∧OutE = InS . Since we only consider compatible
systems and environments, we fix the meaning of the input and output, choosing
the system’s perspective. We denote the set of inputs of the system by In (which
is also the set of outputs of the environment). Similarly Out is the set of outputs
of the system (but the set of inputs for the environment). A single input will be
denoted by i, single output by o, and classes of outputs by capital O. We still
write E

i!
−−→e instead of (E, i, e) ∈ !

−→ and e
O?
−−−→E instead of (e, O, E) ∈ ?

−→.
We require that the observers in color-blind IOATS are deterministic and

input enabled, so that the observation classes on the transitions outgoing from a
single state form a partitioning of the inputs into equivalence classes. Formally:

∀e ∈ ObsE .∀O1, O2 ⊆ Out .∀E1, E2 ∈ GenE . e
O1?
−−−→E1 ∧ e

O2?
−−−→E2

⇒ O1 ∩ O2 = ∅ ∨ (O1 = O2 ∧ E1 = E2)
∀e ∈ ObsE .∀o ∈ Out .∃O ⊆ Out .∃E ∈ GenE .e

O?
−−−→E ∧ o ∈ O. (2)

The generation relation should also be deterministic: ∀E ∈ GenE . ∀i ∈ In.
∀e1, e2 ∈ ObsE .E

i!
−−→e1 ∧ E

i!
−−→e2 ⇒ e1 = e2. Note that determinism in this

sense does not limit the freedom of the environment in choosing inputs, but
means that each input choice uniquely determines the target state.
Consider a blind environment B with two states, a generator B and an ob-

server b. Intuitively B can execute all parts of the system, but does not care about
the responses it gets: ∀i ∈ In. B i!

−−→b and b Out?
−−−−→B. Dually, a perfect vision

environment V observes all the outputs: ∀i ∈ In.V i!
−−→v and ∀o ∈ Out .v {o}?

−−−−→V.

A compatible environment–system pair forms a closed system, advancing in
lock-steps. However, now the generation transition of the system, synchronizes
with the observation transition of the environment, whenever the output pro-
duced falls into the right observation class. We enrich our previous definition of
relativized simulation to accommodate this new synchronization principle:
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F1:I: F2:M:

{o4}? {o1, o2}?

i2!
{o3}?i1!

i3?
i1?i2?

o1! o4! {o4}? {o2}?

i2! {o1}?
{o3}?i1!

i3?
i2? i1?

o3!

o2! o4!

Fig. 3. SystemsM and I and compatible environments F1, F2

Definition 5. Let E=(Out , In,Gen,Obs, !
−→,

?
−→, E0) be a color-blind environ-

ment IOATS and S1=(In,Out ,Gen1,Obs1,
!
−→1,

?
−→1, s

0
1), S2=(In,Out,Gen2,

Obs2,
!
−→2,

?
−→2, s

0
2) be two system IOATSs. A Gen-indexed family of relations

R:Gen→P(Obs1×Obs2) is a relativized simulation iff (s1, s2)∈RE implies that:

whenever E
i!
−−→e ∧ e

O?
−−−→E′

then whenever s1
i?
−−→S1 ∧ S1

o1!−−−→s′1 ∧ o1 ∈ O

then also s2
i?
−−→S2 ∧ S2

o2!−−−→s′2 ∧ o2 ∈ O and (s′1, s
′
2) ∈ RE′ .

Let R be the largest of such families ordered by component-wise inclusion. An ob-
server s2 simulates an observer s1 in the context of generator E, written s1�Es2,
iff (s1, s2) ∈ RE. An IOATS S2 simulates another IOATS S1 in the context of
a compatible color-blind IOATS E, written S1�ES2, iff s0

1�E0s0
2. Finally S1 is

equivalent to S2 in the context of E, written S1 ≶E S2, iff S1�ES2 and S2�ES1.

Even though we have initially postulated that most of the execution con-
texts do not exercise all possible traces of the system, we shall now require that
environments can always produce any of the inputs in In. This requirement sur-
prisingly does not defeat our initial goal. We can direct all transitions producing
impossible inputs to the observer b and embed the blind environment B in every
environment. Instead of specifying that the environment cannot produce i, we
state that i can be produced, but the subsequent system behavior is irrelevant.
Proposition 1 states this formally:

Proposition 1. For any two observers S1, S2 of the same IOATS S1�BS2.

Fig. 3 presents two systems and two compatible color-blind environments.
Environment transitions from generators to the blind observer b have been omit-
ted. There is one such transition for each input–generator pair, for which the
transition is not drawn. Observe that the system M simulates I in the envi-
ronment F1 (I�F1M) not due to the fact that F1 is not able to exercise the
differing parts of the two systems, but because F1 cannot distinguish between
the outputs (o1, o2) produced by I andM. The F2 environment distinguishes I
andM, by observing the outputs o1 and o2 with two separate transitions.
Relativized simulation is a weaker notion than usual simulation and the per-

fect vision environment V is the most discriminating environment:

Proposition 2. For any two systems S1, S2 and for any compatible color-blind
environment E it holds that S1�S2 ⇒ S1�ES2 and S1�S2 ⇐⇒ S1�VS2.

With the above propositions we have hinted at the notion of discrimination—
the ability of environment to distinguish systems from each other:
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Definition 6. A color-blind IOATS F is more discriminating than E, written
E�F , iff F distinguishes more processes: E�F iff ∀S1,S2.S1�FS2 ⇒ S1�ES2.

The blind environment B is the least discriminating—it cannot distinguish
any two systems from each other (proposition 1). By proposition 2 the perfect
vision environment V is the most discriminating one.
The notion of discrimination will soon prove fundamental for our develop-

ments. We shall use it to design composition operators for behavioral properties,
facilitating hierarchical modeling of product lines. Unfortunately the definition of
the discrimination is rather abstract. The quantification over all systems, makes
it infeasible for mechanical treatment. To remedy this obstacle we introduce a
new preorder on environments: a simulation for color-blind IOATSs.

Definition 7. Let E=(Out, In,GenE ,ObsE ,
!
−→E ,

?
−→E , E0) and F = (Out , In,

GenF ,ObsF ,
!
−→F ,

?
−→F , F 0) be color-blind environments. A pair of binary re-

lations, R1 ⊆ GenE ×GenF and R2 ⊆ ObsF ×ObsE , constitutes a simulation
between states of color-blind IOATSs iff (E, F ) ∈ R1 implies that

whenever E
i!
−−→e then also F

i!
−−→f and (f, e) ∈ R2 ,

and (f, e) ∈ R2 implies that whenever f
Of ?
−−−→F

then also e
Oe?
−−−→E and Of ⊆ Oe and (E, F ) ∈ R1 .

Let (R1, R2) be the largest such pair of relations (ordered by point-wise inclu-
sion). A generator F simulates a generator E, written E�F , iff (E, F ) ∈ R1.
An observer e simulates an observer f , written f�e, iff (f, e) ∈ R2. An environ-
ment F simulates E, written E�F , iff E0�F 0.

The simulation preorder can be established mechanically for finite state sys-
tems using state exploration techniques [3]. Thanks to the following central re-
sult, these techniques can also be used to verify discrimination properties:

Theorem 1. For any two color-blind environments E and F : E�F iff E�F .

5 Composition of Behavioral Properties

Typical code generators do not use any context information, assuming that the
model is combined with the perfect vision environment V . Another extreme
would be a program synthesis tool requiring a precise environment model, im-
posing a significant burden on engineers. We propose light-weight, composable,
partial specifications of environments in the form of behavioral properties like:
that certain events always come interleaved (e.g. on/off switch), or that there is
causality between an input and an output (e.g. a timer only timeouts after it has
been started). Each property can be expressed as a simple color-blind IOATS.
In this section we consider ways of composing such properties.
As said before, every observer e of a color-blind IOATS induces a partitioning

of Out into observation classes. Let us denote this partitioning by Pe. The set of
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all equivalence relations (and hence the set of all partitionings) over Out , ordered
by inclusion, forms a complete lattice. Consequently for any set of partitionings
{Pk}k∈L there exist the greatest lower bound

�
k∈L Pk, which is the coarsest

partitioning finer than any of Pk and the least upper bound
⊔

k∈L Pk, which is
the finest partitioning coarser than all Pk.
The composition is defined for environments with the same I/O signatures.

We consider two kinds of composition: a sum and a product. Sums intuitively
correspond to disjunction of properties (or sums in CCS [19]). Products corre-
spond to conjunctions (or synchronous composition in CSP [9]).

E1
i!

−−→e1 . . . En
i!

−−→en

nP

k=1
Ek

i!
−−→

nQ

k=1
ek

(SG)

O∈
nF

k=1
Pek

E = {E|∃1≤k≤n.∃O′ ⊆ O.ek
O

′?
−−−→E}

nP

k=1
ek

O?
−−−→

Q
E

(SO)

E1
i!

−−→e1 . . . En
i!

−−→en

nQ

k=1
Ek

i!
−−→

nP

k=1
ek

(PG)

O∈
n�

k=1
Pek

E={E|∃1≤k≤n.∃O′⊆Out .ek
O

′?
−−−→E ∧ O⊆O′}

nQ

k=1
ek

O?
−−−→

P
E

(PO)

The result of a composition is a well-formed color-blind IOATS. The rules for the
sum of generators (SG) and for the product of generators (PG) are very simple,
due to the determinism and input-enabledness of our generators. The composi-
tion is synchronous: all composed generators take identical steps simultaneously.
From the system’s perspective a single input is generated. The observer rules are
more complex, due to the embedding of determinisation. Consider the product
of observers (PO) first. The observation classes O of the composed environment
will be finer than observation classes of any of the composed processes. When-
ever any o is observed by the result of the composition we advance to the state E

composed of states reachable by o from all ek’s. Since O is finer than some class
in any of these observers there is always exactly n such reachable generators.
Dually in the sum (SO) observational classes are coarser than classes of any of
the composed observers. The transition relation follows to those generators that
can be reached by any output belonging to such an extended class. The size of
E can exceed the number of original observers n.
Our compositions enjoy the following essential property:

Theorem 2.
∑n

k=1{Ek} is the least environment, which simulates all summands,
while

∏n
k=1{Ek} is the greatest environment, which is simulated by all the factors.

Since discrimination and simulation coincide (Thm. 1) � can replace � in
the above theorem: The sum of environments is the least discriminating environ-
ment, more discriminating than each of the summands. The product is the most
discriminating environment, less discriminating than each of the factors. These
in turn are standard expectations about conjunction and disjunction. A conjunc-
tion (product) of two properties expressing inability to observe two behaviors,
will result in a property expressing inability to observe either. Disjunction (sum)
of two properties expressing ability to observe something, results in a property
expressing the ability to observe both. See example on Fig. 4.
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Fig. 4. Environments Interleave i1 i2 (a) and Equiv o1 o2 (b), their product (c) and
sum (d) (In= {i1, i2, i3}, Out = {o1, . . . , o4}). Transitions to the b observer are sup-
pressed. The product only generates what both of the factors could generate. It can
distinguish only what both of them could. The sum can generate what any of the sum-
mands could observe, and it observers what any of them could. In particular o1 and o2

are distinguished in the traces for which the Interleave property is preserved and not
otherwise

6 Toward Realistic Design Languages

Until now we have assumed that outputs of systems are atomic. This assump-
tion however often does not hold for realistic languages, which typically support
structured output: sets, multisets, sequences or even sequences of sets of atomic
actions produced in a single step. We have successfully applied our framework
to the semantics of languages producing sets (state/event systems of section 2,
Harel’s statecharts [7], synchronous languages [2]) and sequences (Java Card
[24], UML state diagrams [21]). We describe some intricacies of the latter here,
while simpler set-based environments are demonstrated by example in section 7.
Let Event and Action be finite sets of atomic events and actions respectively.

Each observation transition of the system awaits a single input from Event , while
each generation transition produces an output which is a finite sequence of ac-
tions from Action: In = Event and Out = Action∗. The first step in adapting the
theory is linking the concrete states of models (for example state configurations
in statecharts, or variable store in Java Card) to abstract states of the IOATS.
This can normally be done in a direct way (at least for finite state models). Sub-
sequently the observation and generation relations must be extracted from the
semantics of the language in question. Observation classes on the environment
side (color-blind) become sets of sequences of actions. Partitioning of Action∗

into classes that are regular languages can be described by a finite automaton.

Definition 8. A classifier DFA over alphabet A is a quadruple c = (S, A, s,−→),
where S is a finite set of states, A is a finite set of symbols, s ∈ S is an initial
state and −→∈S→A→ S is an input-enabled transition function, meaning that
for every s∈S function −→(s) is defined for each element of its domain A. We
usually write s

a
−→s′ instead of −→(s)(a) = s′.

A classifier DFA consecutively applies −→ to a state and the head of the
input sequence obtaining a new state and input sequence. An execution over a
list of symbols s

a1−−→s1
a2−−→ . . .

an−−→sn is abbreviated with s
a1...an−−−−−→∗sn.
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E: F: E + F : E × F:
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e1!

?

e2!

a2

Fig. 5. Environments E and F observing sequences, their sum and product

Definition 9. Let c=(S, A, s,−→) be a classifier. Sequences σ1, σ2∈A∗ are equiv-
alent with respect to c if both advance c to the same state: ∃s′.s

σ1−−→∗s′∧s
σ2−−→∗s′.

The equivalence with respect to a classifier is an equivalence relation and parti-
tions A∗ into a finite set of classes, isomorphic with the reachable states.
For a classifier e = (Se,Action, se,−→e) consider a mapping of its states to

generators γe : Se → Gen . Each observer of the environment comprises a classi-
fier and a generator mapping. Environments advance from an observer (e, γe) to
a generator γe(s) if it observes a sequence σ advancing the classifier to a state s:

(e, γe)
{σ | se

σ
−−→∗s} ?

−−−−−−−−−−−−−→γe(s) .

Fig. 5 shows two color-blind IOATSs E and F of signature: Event = {e1, e2}
and Action = {a1, a2}. E distinguishes reactions containing at least one occur-
rence of a1 from those not containing a1 at all. Similarly F distinguishes be-
tween sequences containing at least one a2 from those not containing a2 at all.
Observers are drawn as boxes containing classifier DFAs. Classifier transitions
are represented as dotted arrows to distinguish them from IOATS transitions.
The product of classifiers is a central construction in computing products of

observers, supporting composition of environments:

Definition 10. Let e = (Se, A, se,−→e) and f = (Sf , A, sf ,−→f ) be classifiers.
A product of e and f is a classifier e ⊗ f = (Se × Sf , A, (se, sf ),−→), where
(se, sf ) a

−→(s′e, s
′
f ) if se

a
−→s′e and sf

a
−→s′f .

Proposition 3. Let ∼e and ∼f be two equivalences on Action
∗ induced by clas-

sifiers e and f . Their greatest lower bound ∼e � ∼f exists and is induced by e⊗f .

Figure 5 presents the sum E + F obtained by application of operational rules
of section 5 (SG,PO) and the above proposition. E + F distinguishes four classes
of outputs: an empty sequence, sequences consisting of occurrences of a1, con-
sisting of occurrences of a2, and containing occurrences of both a1 and a2.
The least upper bound of two partitionings ∼e � ∼f is usually computed

using a Union-Find algorithm, which unifies any two overlapping classes, until
all classes are disjoint. In our case classes are represented by states in the clas-
sifiers e and f . We need to apply the algorithm to states of e and f , ultimately
producing a classifier, whose states are sets of states of f and e. The two classes
s1 and s2 overlap, whenever there is an output sequence, that can advance one
classifier to a state in s1, and the other classifier to a state in s2. The initial set
of classes is given by reachable states of the product classifier e ⊗ f :
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i. S := {{ei, fj} | (ei, fj) is reachable in e ⊗ f}.
ii. If there exist s1, s2 ∈ S such that s1∩s2 �= ∅ then S := S\{s1, s2}∪{s1∪s2}.
iii. Repeat (ii) until no more classes can be unified.

The final value of S is the set of states of the new classifier DFA. The ini-
tial state is the class that contains initial states of e and f (note that both of
them will be in the same class). The transition function −→ is a sum of tran-
sition functions −→e and −→f lifted to sets of states. For s1, s2 ∈ S: s1

a
−→s2 if

∃.p1 ∈ S1.∃p2 ∈ S2.p1
a
−→e p2 ∨ p1

a
−→f p2. The following proposition claims that

this function is well-defined, deterministic and input-enabled:

Proposition 4. Let s1, s2 ∈ S be any two of the sets of states (not necessarily
distinct) constructed with the above algorithm. Then for any states p1, p2 ∈ s1,
p′1, p

′
2 ∈ s2 of the original classifiers and any symbol a: p1

a
−→1 p′1 and p′1 ∈ s2 iff

p2
a
−→2 p′2 and s′2 ∈ s2, where −→i denotes −→e if si ∈ Se or −→f if si ∈ Sf .

It follows that the classifier g = (S, A, s,−→) constructed above is a well
defined classifier DFA. Moreover, the observation classes that it induces are
coarser than any class of ∼e and ∼f . Due to the properties of the union-find
algorithm, ∼g is actually the least equivalence encompassing both ∼e and ∼f :

Proposition 5. Let ∼e and ∼f be equivalences over Action
∗, induced by clas-

sifiers e = (Se,Action, se,−→e) and f = (Sf ,Action, sf ,−→f ). The equivalence
∼e � ∼f is induced by a classifier g such that its states are computed applying
the Union-Find algorithm to the set { {ei, fj} | (ei, fj) reachable in e ⊗ f },
where two sets s1,s2 are unifiable if s1 ∩ s2 is not empty. The union operation is
a set union, the initial state is the set containing initial states of e and f , and
the transition function is a sum of transition functions lifted to sets of states.

The rightmost IOATS on Fig. 5 is a product of E and F obtained by applica-
tion of the composition rules from section 5 (PG,SO) and the above algorithm.
This product gives rise to the observer which does not distinguish any sequences.

7 Environment Driven Specialization

We shall now broaden the meaning of a model of a system to encompass a family
of systems, and let it represent functionality, which in its entire richness may
not be present in any of the actual members being produced. Particular family
members will be specified using models of environments, and derived by trans-
formations preserving relativized equivalence in a given color-blind environment.
We shall informally demonstrate a product line derivation scenario, hinting at
what techniques could be used to make such automatic derivation viable.
Our family will consist of several state/event systems. The transition relation

of state/event systems (see section 2) produces sets of actions during a single
reaction step. In such a setting the observational classes of environments become
sets of sets (powersets) of actions.
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Fig. 6. Specialized models C2 (a), C3 (b) and C4 (c). Overview of the relationship
between the environments (d) and the specialized models (e)

For a set A ⊆ Action let ignore A denote observation classes, which ignore
elements of A, but distinguish all the other actions:

ignore A =
{
{o ∪ o

′|o′ ∈ P(A)}
∣∣ o ∈ P(Action \ A)

}
Note that ignoring the empty set, ignore ∅, means observing all differences in
outputs. Another abbreviation equiv A denotes observation classes, which are
unable to distinguish between any actions in A:

equiv A =
{
{o ∪ o

′|o′ ∈ P(A) \ ∅}
∣∣ o ∈ P(Action \ A)

}
∪

{
o

∣∣ o ∈ P(Action \ A)
}

We shall begin with stating general requirements, which hold for all the en-
vironments used to execute the alarm clock. These general requirements usually
reflect the physical nature of actuators and sensors. In the case of our alarm clock
events dark/bright and snooze/snoozeR are always generated in an alternating
fashion: E0 = Interleave snooze snoozeR ∧ Interleave dark bright. Figure 7a
demonstrates how Interleave could be defined using a set-based semantics.
The first member of the family C1 was introduced in section 2 (Fig. 2). This

model operates in an environment, which becomes blind for the lightOn action
right after generating the snooze event. Formally E1 = E0 ∧ E ′, where E ′ is
defined on Fig. 7b. Figure 6a presents a new clock C2, which is devoid of the
actual snooze function. The user of this clock can still press the snooze button,
but the only effect it has is turning the backlight on for a short while. This
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Fig. 7. (a) Interleave snooze snoozeR. (b) Environment E ′ ignoring the lightOn output
produced in reaction to the snooze button. (c) Environment E ′′ ignoring the snooze
function of the clock. (d) Environment E ′′′ Equiv glow lightOff

user becomes blind to beepOn and beepOff actions initiated by the snooze and
snoozeTO events. Formally E2 = E0 ∧ E ′′, where E ′′ is defined on Fig. 7c.
The third clock variant C3 is a combination of C1 and C2. It has neither the

snooze function nor the snooze activated backlight function. We obtain it by
specialization against the E3 environment, where E3 = E1 ∧ E2. The model is
presented on Fig. 6b. Note that this clock still needs a snooze button, which
exhibits a slight anomaly in turning on the glow mode, namely that the glow
mode will not be activated, while this button is pressed. This is a perfectly
correct reminiscence of our original model, which could be easily remedied by
adding another constraint to the environment, that event snooze never occurs.
We would like to consider yet another restriction of the clock behavior. The

clock denoted C4, shall be deprived of the glowing mode (Fig. 6c). The glow-
mode lamp is not installed and the glow action is reimplemented to turn off the
main lamp instead. A corresponding environment E ′′′ is defined on Fig. 7d. This
environment is itself interesting as it specifies a less shiny alarm clock, which may
find its happy customers. Nevertheless, we decided to combine its characteristics
with the restrictions of E3, giving rise to an even more simple alarm clock with
neither the snooze related functions nor the glow mode: E4 = E3 ∧ E ′′′.
One can describe surprisingly many more reasonable variants even for such

a simple system as our alarm clock. Figures 6d-6e present an overview of en-
vironments and systems in our product line. Edges represent simulation and
relativized simulation. Proposition 6 explains how to interpret transitivity in
the hierarchy of systems (Fig. 6e).

Proposition 6. For any systems S1, S2 and S3 and any two compatible color-
blind environments E and F it holds that: S1�ES2∧S2�FS3∧E�F ⇒ S1�ES3.
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8 Related Work

Derivation of product lines is conventionally associated with partial evaluation
[13, 4, 8]. There have been limited approaches to enable partial evaluation based
on execution traces instead of fixed input values [10, 20, 5], nevertheless they were
never implemented for realistic languages. We fear that these transformations,
designed for abstract process calculi, can be barely applied in such contexts. This
is why we intend to define transformations on the language level, and only prove
correctness on the abstract level. Our framework allows more transformations
than known before due to the color-blindness, which allows some non-reductive
mutations in the program.
Previously Wąsowski [25] presented a static framework for specifying envi-

ronments for reactive models, which relies solely on state independent properties.
The present paper provides a theoretical foundation for a product line manage-
ment setup similar to Wasowski’s [25], but based on behavioral properties.
Relativized simulation has been originally introduced by Larsen [16, 15, 14].

Our framework is modeled after this work, rephrased in the setting of I/O al-
ternating transition systems and extended with the notion of color-blindness.
In Larsen’s formulation, based on simple labeled transition systems [19], it was
impossible to express an environment’s inability to distinguish outputs.
The study of behaviors of systems embedded into execution contexts is rel-

atively mature [15, 1, 18, 22, 12]. Our work stems out from this series, by its ex-
tended support for observability specifications via color-blindness. This support
is needed, if the tools based on this framework, are to be useful for development
of product lines of embedded systems.

9 Conclusion Future Work

We have presented the semantics of a specification language for environments
of reactive synchronous systems, together with a notion of context-dependent
refinement based on color-blindness. This refinement relation is more liberal than
usual in allowing some mutations to program outputs, instead of bare reductions.
We have explained and demonstrated how partial specifications of behaviors
can be composed and used to define families of products. The framework was
designed as a core of an upcoming tool for compact code generation and product
line derivation for discrete control embedded systems. Our specifications shall
be used as preconditions for advanced model optimizers/specializers. We have
thoroughly discussed issues, which arise in the implementation of the theory for
realistic languages, especially focusing on languages with sequences as outputs.
An implementation [23] of a powerful context-aware optimizer for models

based on model-checking and program analysis is currently underway. This pro-
totype tool is supposed to be compatible with an industrial development envi-
ronment for embedded systems [11], which will allow for realistic case studies.
We would like to attempt a formulation of a corresponding theory for dis-

tributed asynchronous systems. We hope that a similarly appealing construction

and
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can be proposed for such systems. The main difficulty appears to be a notion of
simulation between nondeterministic color-blind environments. The simulation
of definition 7 is too weak to imply theorem 1 in a nondeterministic setting.
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11. IAR Inc. IAR visualSTATE . http://www.iar.com/Products/VS/.
12. A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In POPL
2001. ACM Press.

13. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice Hall, 1993.

14. K.G. Larsen and R. Milner. A compositional protocol verification using relativized
bisimulation. Information and Computation, 99(1):80–108, 1992.

15. K. Larsen. Context Dependent Bisimulation Between Processes. PhD thesis, Ed-
inburgh University, 1986.

16. K. Larsen. A context dependent equivalence between processes. Theoretical Com-
puter Science, 49:184–215, 1987.

17. J. Lind-Nielsen, H. R. Andersen, H. Hulgaard, G. Behrmann, K. Kristoffersen, and
K. G. Larsen. Verification of large state/event systems using compositionality and
dependency analysis. Formal Methods in System Design, 18(1):5–23, 2001.

18. N. Lynch. I/O automata: A model for discrete event systems. In Annual Conference
on Information Sciences and Systems, pp. 29–38, Princeton, N.J., 1988.

19. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
20. M. Murakami. Partial evaluation of reactive communciating processes using tem-
poral logic formulas. In Algebraic and Object-Oriented Approaches to Software
Science, 1995.

21. Object Management Group. OMG Unified Modelling Language specification, 1999.
22. S. K. Rajamani, J. Rehof. Conformance checking for models of asynchronous
message passing software. In CAV’02, LNCS 2404, Springer-Verlag.

23. Scope: a statechart compiler. http://www.mini.pw.edu.pl/~wasowski/scope.
24. Sun Microsystems, Inc. Java Card(TM) specification. http://java.sun.com/.
25. A. Wąsowski. Automatic generation of program families by model restrictions. In
SPLC 2004, LNCS 3154, Boston, USA, September 2004. Springer-Verlag.

174 K.G. Larsen, U. Larsen, and A. Wa̧sowski



On the Correspondence Between Conformance
Testing and Regular Inference

Therese Berg1, Olga Grinchtein1, Bengt Jonsson1,
Martin Leucker2, Harald Raffelt3, and Bernhard Steffen3

1 Department of Computer Systems, Uppsala University, Sweden
{thereseb, olgag, bengt}@it.uu.se

2 Institute of Informatics, TU Munich, Germany
leucker@in.tum.de

3 LS V, Universität Dortmund, Germany
{raffelt, steffen}@cs.uni-dortmund.de

Abstract. Conformance testing for finite state machines and regular
inference both aim at identifying the model structure underlying a black
box system on the basis of a limited set of observations. Whereas the
former technique checks for equivalence with a given conjecture model,
the latter techniques addresses the corresponding synthesis problem by
means of techniques adopted from automata learning. In this paper we
establish a common framework to investigate the similarities of these
techniques by showing how results in one area can be transferred to
results in the other and to explain the reasons for their differences.

1 Introduction

The two areas of conformance testing for finite state machines and regular infer-
ence both share the same problem of deducing an unknown finite state machine
from a limited set of observations. Whereas the former technique justifies a given
conjecture, the latter techniques aims at constructing conjectures by observation.
In this paper we establish a common framework to investigate the similarities of
these techniques by showing how results in one area can be transferred to results
in the other and to explain the reasons for their differences.

The area of testing reactive systems has witnessed significant advances in the
last decades. A model problem in this area is that of black-box protocol testing,
where one assumes given a finite-state machine specification of the intended
behavior of a protocol, and would like to derive a test suite which checks that an
implementation conforms to such a specification. There are several techniques for
generating test suites that guarantee that an implementation under test (IUT)
conforms to a specification, under certain hypotheses [Cho78, FvBK+91, SD88,
VCI90].

A more recent line of development concerns checking whether an IUT sat-
isfies certain correctness properties, in the absence of a model or specification.
Recent work has employed techniques of automata learning, or regular infer-
ence [GPY02, HHNS02, HNS03, PVY99].
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Both of the above approaches solve the problem of inferring a finite state
machine from observations of its behavior, with different modalities. In confor-
mance testing, the purpose is to check that it is equivalent to a given finite state
specification. In automata learning, the purpose is to infer an unknown finite
state machine. Both approaches must solve the problem of how to infer a finite
state machine from a limited set of observations. Thus, techniques for confor-
mance testing and automata learning must decide what is “enough information”
to deduce that an IUT is equivalent to a certain finite state machine. In confor-
mance testing, one goal is to minimize the cost (e.g., the number of observations
or their total length) of the observations that are needed to infer that the IUT is
equivalent to a specification. In automata learning, one goal has been to under-
stand when “enough information” is obtained to make a conjecture about the
structure of an IUT.

Let us make the preceding discussion a little more elaborate. In conformance
testing we are given an FSM M, playing the role of a specification, and we want
to verify that the IUT is equivalent to M. We construct a test suite with the
property that any FSM A which passes the test suite is equivalent to M. Of
course, this can not be achieved unless some additional assumptions about A are
introduced. A common such assumption is that A has at most as many states as
M. We will then say that the test suite is a conformance test suite for M under
these assumptions.

In Automata Learning, we are given a set of observations generated by a test
suite or a set of queries, and want to construct an FSM which is an “as good as
possible explanation” of the observations, hopefully being close to the structure
of the actual IUT. Since there are an infinite number of such FSMs, we should
also here add assumptions. Typical assumptions are of the form to give an upper
bound the number of states, or to ask for an automaton with a minimum number
of states; note that there may be several such automata.

The problem of constructing conformant finite automata was studied by many
people [Ang81, Ang87, BDG97, Gol67, Gol78, OG92] and others. Several of these
works present conditions on observations that allow a unique minimum automa-
ton to be constructed with modest effort (e.g., in polynomial time).

From the above discussion, it follows that in principle, we can relate confor-
mance testing and automata learning in the following way:

– If the observations form a conformance test suite for an FSM M, given
some assumptions, then under the same assumptions we can infer the FSM
M from these observations using automata learning techniques.

– If the FSM A is inferred from the observations under some assumptions, and
furthermore A is the only such automaton, then under the same assumptions
the observations form a conformance test suite for A.

The above statements are rather general, and “kind of obvious”. In this paper,
we shall compare results in these two areas, and make the link between these
two areas explicit. One goal is to relate existing techniques for conformance
testing and automata learning by showing that they use very similar concepts
of “enough information” in order to infer the structure of an IUT. We will also
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make a comparison of the difference in complexity between the two approaches
in different settings.

From a different point of view, one can understand our contribution as clar-
ifying the following question: What is the core information of an automaton in
terms of observations/traces needed to identify it uniquely? We do this in the
framework of conformance testing as well as in the framework of learning and
show that both domains (nearly) identify the same type of information.

For our comparison, we must bridge several differences in the models typically
used. In conformance testing, the most common model is the Mealy machine,
which generates output on each transition. In automata learning, the most com-
mon model is deterministic finite automata (DFA), which merely accept or reject
a given input string. We therefore define a unifying notion of finite state machine
which has an abstract notion of “output” in response to a received sequence of
input symbols. This notion can be instantiated to Mealy machines by letting the
output be the sequence of symbols generated in response to the input, to DFAs
outputting a verdict “accepted” or “not accepted”.

An important vehicle in the comparison is a general theorem, which shows
that under certain conditions on a set of observations, a small finite state machine
that satisfies these observations must have a certain structure.

Related Work. The relationship between machine learning and conformance test-
ing was observed by Lee and Yannakakis [LY96–p. 1118], who stated that An-
gluin’s algorithm can be used for fault detection. Note that [LY96] employ learn-
ing techniques for conformance testing while we study their similarities. [LY96]
also suggested as an interesting subject of study the relationship between con-
formance testing without reset (surveyed in [LY96]), and corresponding work on
machine learning by Rivest and Schapire [RS93].

Organization of this Paper. In the next section, we define our model of Finite
State Machines, aiming to unify Mealy machines, DFAs, and some other models.
In Section 3, we state a general theorem which shows how a set of observations
limits the set of machines that may be inferred from it. Section 4 describes some
existing techniques for deriving conformance test suites, and Section 5 describes
some existing techniques for learning automata from observations. Results for
these methods are shown to follow from the general theorem in Section 3. The
techniques of these two sections are thereafter related in Section 6.

2 Preliminaries

We will first define two variants of finite state machines: Mealy machines, com-
monly used in the conformance testing literature, and finite automata, commonly
used in automata learning literature. They differ in how they respond to input
sequences: Mealy machines produce an output symbol in response to each re-
ceived input symbol, whereas finite automata merely accept or reject a given
input string. We will define a unifying more general model of finite state ma-
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chines, that produce a more abstractly defined form of output, which can be
specialized to both Mealy machines and finite automata.

We assume a finite set Σ of input symbols, usually denoted by a, b, a1, a2, . . . .
Elements of Σ∗ are (input) strings or words. Given u, v ∈ Σ∗, u is said to be a
prefix of v if v = uw for some w ∈ Σ∗.

Mealy Machines. A Mealy machine over Σ is a tuple M = 〈O,Q, q0, δ, λ〉 where
O is a finite nonempty set of output symbols, Q is a finite nonempty set of states,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is the state transition function, and
λ : Q × Σ → O is the output function.

An intuitive interpretation of a Mealy machine is as follows. At any point
in time, the machine is in one state q ∈ Q. It is possible to give inputs to the
machine, by applying an input symbol a. The machine responds by producing
an output symbol λ(q, a) and transforming itself to the new state δ(q, a). We
can depict Mealy machines as directed labeled graphs, where Q is the set of
vertices. For each state q ∈ Q and input symbol a ∈ Σ, there is an edge from q
to δ(q, a) labeled by “a/b”, where b is the output symbol λ(q, a). See Figure 1
for an example of a Mealy machine. Note that the letters a and b are used in
two ways. In the text they are metasymbols denoting arbitrary input and output
symbols, whereas in examples they denote specific input or output symbols.

q1q2

q3q4

a/0 b/0

b/1 a/0

a/0

b/1

a/1

b/0

Fig. 1. A Mealy machine with states Q = {q1, q2, q3, q4}, input symbols I = Σ =
{a, b}, and output symbols O = {0, 1}

Applying an input sequence u = a1a2 · · · ak ∈ Σ∗ starting in a state q1
takes the machine successively to a sequence of states q2, q3, . . . , qk+1, denoted
δ(qi, u), where qi+1 = δ(qi, ai) for i = 1, · · · , k, and produces a sequence of
output symbols b1b2 · · · bk ∈ O∗, where bi = λ(qi, ai) for i = 1, · · · , k. We extend
the transition and output functions from input symbols to sequences of input
symbols, by defining δ(q1, u) = qk+1 and λ(q1, u) = b1b2 · · · bk. A more precise
recursive definition is as follows:

δ(q, ε) = q λ(q, ε) = ε
δ(q, ua) = δ(δ(q, u), a) λ(q, ua) = λ(q, u)λ(δ(q, u), a)



On the Correspondence Between Conformance Testing and Regular Inference 179

Finite Automata. A deterministic finite automaton (DFA) over Σ is a structure
A = (Q, δ, q0, F ) where Q is a non-empty finite set of states, q0 ∈ Q is the initial
state, δ : Q×Σ → Q is the transition function, and F ⊆ Q is the set of accepting
states.
Just as for Mealy machines, we extend the transition function from input symbols
to sequences of input symbols, by defining

δ(q, ε) = q
δ(q, ua) = δ(δ(q, u), a)

An input string u is accepted iff δ(q0, u) ∈ F . The language accepted by A,
denoted by L(A), is the set of accepted input strings.

Unifying Formalism. In order to unify the two above types of state machines,
we define a more abstract notion of output produced by a finite state machine.
Let an output domain be a semi-group D equipped with an associative binary
operation, which we denote by juxtaposition. The intended intuition is that an
FSM when inputing a sequence of inputs u outputs an element in D. If the FSM
outputs x after inputing u and thereafter outputs y in response to v, then the
entire output in response to uv is the element xy.

Definition 1. A finite state machine (FSM) over Σ is a structure (D, Q, δ, q0, λ)
where D is an output domain, Q is a non-empty finite set of states, q0 ∈ Q is
the initial state, δ : Q×Σ → Q is the transition function, and λ : Q×Σ∗ → D
is an output function, which satisfies the following homomorphism property:

– λ(q, uv) = λ(q, u)λ(δ(q, u), v) for any q ∈ Q and u, v ∈ Σ∗. ��

By the homomorphism property, it is enough to define the output function for
input sequences of length 0 and 1, i.e., to define λ(q, ε) and λ(q, a) for a ∈
Σ.

In this paper, we will consider only FSMs which are suffix-observable, meaning
that from only the output λ(q0, uv) produced by applying the input sequence uv,
we can uniquely extract the output generated by the suffix v, which we denote
by λ(q0, uv)|v, so that λ(q0, uv)|v = λ(δ(q0, u), v). For the Mealy machine and
DFA models, this assumption trivially holds.

To see how our definition of finite state machines generalizes Mealy machines
and finite automata, let us specialize it first to Mealy machines. Here, the output
domain is the set O∗ with the binary string concatenation operation. The output
function is the same as that defined for Mealy machines, lifted to strings.

To specialize to finite automata, let D be the set {+,−}, where intuitively +
denotes “accept” and − denotes “not accept”. The semi-group operation maps
a pair of arguments onto the second one, i.e., it can be defined by the following
table.

+ + = + + − = −
− + = + − − = −
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The output function of a DFA is defined by

λ(q, ε) =
{

+ if q ∈ F
− if q 	∈ F

λ(q, u) = λ(δ(q, u), ε)

where the last equality follows from the particular definition of the semi-group
operation, which makes the left argument irrelevant.

Looking at the examples of Mealy machines and finite automata, we can
identify two special subclasses of FSM, characterized by the forms of their output
functions:

– FSMs that generate output only at transitions, where λ(q, ε) is a unit element
of D for any state q. Mealy machines are an example with ε as unit element.

– FSMs that generate output only at the last state, i.e., λ(q, u) = λ(δ(q, u), ε),
implying that we only need to specify λ(q, ε) for any state q. An example is
DFAs.

3 Characterizing FSMs by Observations

In this section, we provide general definitions and results concerning how FSMs
can be uniquely inferred from or characterized by observations or tests. Let D
from now on be a fixed particular output domain.

Let us consider the process of observing or testing a black-box IUT, whose
behavior can be represented as an FSM. This consists in applying a set of input
sequences to the IUT, whereby the corresponding outputs are observed and
recorded. The recorded observations can be represented as a partial observation
function O from Σ∗ to D, whose domain Dom(O) is the set of input sequences
that have been applied to the IUT.

In conformance testing, the observation function should represent a test suite
which is obtained from an FSM M = (D, Q, δ, q0, λ) which plays the role of a
specification, and a set I ⊆ Σ∗ of input sequences. Define M|I as the observation
function O with Dom(O) = I, such that O(u) is defined and equal to λ(q0, u)
whenever u ∈ I. We say that an FSM A = (D, Q, δ, q0, λ) is conformant with
an observation function O, denoted A |= O, if O(u) = λ(q0, u) whenever u ∈
Dom(O). We trivially have M |= M|I for any M and I.

Definition 2. O is a conformance test suite for M if any FSM A with at most
as many states as M, such that A |= O, is isomorphic to M.

In automata learning, we are given an observation function O, and want to con-
struct an FSM which is an “as good as possible explanation” of the observations,
hopefully being close to the actual IUT. An obvious criterion is that the FSM
should be conformant with O.1 Since there are an infinite number of such FSMs,

1 However, not all works on automata learning guarantee to generate conformant
FSMs.
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we should also here add assumptions. A natural choice is to ask for an automa-
ton with a minimum number of states. Note that there may be several such
automata.

Definition 3. Let O be an observation function. We say that the FSM A is
inferred from O if A |= O and any other A′ with A′ |= O has at least as many
states as A. We say that A is uniquely inferred from O if A is the only such
FSM.

We observe the following propositions,

– if O is a conformance test suite for M then M is uniquely inferred from O,
and

– if A is uniquely inferred from O then O is a conformance test suite for A.

By these propositions, both conformance testing and automata learning must
in some sense prescribe how to transform an observation function O into an au-
tomaton which is conformant with O. A natural approach is to define an equiv-
alence relation on the prefixes of Dom(O), and let each equivalence class be a
state of an automaton. If the equivalence is properly constructed, the transition
and output functions can be obtained from O. In general, however, the number of
possible equivalences is too large for this to be an efficient procedure. The prob-
lem of finding the minimal FSM (i.e., with the smallest number of states) which
is conformant with a given observation function is NP-complete [Gol78]. But
several works [Gol67, Gol78, Ang81, Ang87, OG92, BDG97] overcome this obsta-
cle by presenting conditions on the observations that allow a unique minimum
automaton to be constructed. The conditions exploit the property of suffix-
observability, by regarding each input sequence as the concatenation of a prefix
and a suffix (possibly in several ways).

So, let the set of observations be given by an observation structure, which is
a partial function T from a set Dom(T ) ⊆ Σ∗ of prefixes, which must include ε.
For each u ∈ Dom(T ), T (u) is a partial function from a set Dom(T (u)) ⊆ Σ∗ of
suffixes, which must include ε, to D. Intuitively, T (u)(v), for v 	= ε, is the output
produced in response to the suffix v in a situation where the input sequence
uv is applied to the IUT. Note that this output can be uniquely extracted by
the assumption of suffix-observability. In contrast, we let T (u)(ε) be the entire
output produced by the IUT in response to the input sequence u. Note that
T (u)(ε) has a meaning which differs from that of T (u)(v) for v 	= ε.

An observation structure T represents the observation function OT with

– Dom(OT ) = {uv : u ∈ Dom(T ) and v ∈ Dom(T (u))}, and
– OT (uv) = T (u)(ε) T (u)(v).

Conversely, an observation function O can, given a set U ⊆ Dom(O), be repre-
sented by the observation structure TO,U with

– Dom(TO,U ) = U and Dom(TO,U (u)) = {v : uv ∈ Dom(O)},
– TO,U (u)(ε) = O(u) for u ∈ U , and
– TO,U (u)(v) = O(uv)|v for v 	= ε, u ∈ U , and v ∈ Dom(TO,U (u)),
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where O(uv)|v is the output produced in response to the suffix v, obtained from
the result O(uv) of applying uv to the IUT.

When constructing an automaton from observations, the prefixes in Dom(T )
are candidates for representing states of the automaton, whereas the suffixes in
the sets Dom(T (u)) are used to determine which prefixes should represent the
same state.

Let T (u) ≈ T (u′) denote that for any v ∈ (Dom(T (u)) ∩ Dom(T (u′)))
we have T (u)(v) = T (u′)(v). Let T (u) ⊆ T (u′) denote that Dom(T (u)) ⊆
Dom(T (u′)) and T (u) ≈ T (u′). Let T (u) = T (u′) denote that T (u) ⊆ T (u′)
and T (u′) ⊆ T (u).

Define an access string of T , to be an input sequence u ∈ Dom(T ) such
that ua ∈ Dom(T ) for each a ∈ Σ. We say that an equivalence ≡ on Dom(T )
is U -closed if each equivalence class contains a string in U . We say that an
equivalence ≡ on Dom(T ) is U -consistent if whenever u ≡ u′ for u, u′ ∈ U and
ua, u′a ∈ Dom(T ) for any a ∈ Σ, then ua ≡ u′a and T (ua)(ε)|a = T (u′a)(ε)|a.

Definition 4. Let T be an observation structure, let U be a set of access strings
of T containing ε. If ≡ is a U -closed and U -consistent equivalence relation on
Dom(T ), define the automaton 〈T , U〉/ ≡ as (D, Q, δ, q0, λ), where

– Q = Dom(T )/ ≡,
– δ([u], a) = [ua] for u ∈ U ,
– q0 = [ε],
– λ([u], a) = OT (u, a)|a for u ∈ U . ��

We are now ready to state a general theorem that gives constraints on any
FSM that is conformant with an observation function.

Theorem 1 (Characterization Theorem). Let T be an observation struc-
ture, and let U be a set of access strings of T . If the relation ≈ on Dom(T )
contains a unique maximal equivalence relation ≡, which is U -closed, then (let-
ting n be the number of equivalence classes of ≡)

1. any FSM which is conformant with OT has at least n states,
2. if A |= OT and A has at most n states, then ≡ is U -consistent, and

(a) A is isomorphic to 〈T , U〉/ ≡,
(b) T is a conformance test for A
(c) A is uniquely inferred from T .

Proof. If A = (D, Q′, δ′, q′
0, λ

′) |= OT , then each of its states can correspond
to at most one equivalence class of ≡, i.e., u ≡ u′ if δ′(q′

0, u) = δ′(q′
0, u

′) for
u, u′ ∈ Dom(T ). If A has n states, this correspondence must be exact, and the
theorem follows. ��

Intuitively, Theorem 1 gives necessary constraints on an FSM that is confor-
mant with the observations represented by an observation structure T . If there
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is a unique maximal equivalence with n classes, then any conformant automaton
has at least n states. In general, there is no guarantee that a conformant FSM
with n states actually exists, but if it does, Theorem 1 states that it must be
isomorphic to 〈T , U〉/ ≡. Later, in Theorem 4 we shall give extra conditions on
T which guarantee the existence of a conformant n-state automaton.

The condition “contains a unique maximal equivalence relation” in Theorem 1
is not so constructive. More concrete sufficient conditions on T are given by the
following proposition.

Proposition 1. Let T be an observation structure, and let U be a set of access
strings of T . If

– T (u) 	≈ T (u′) for u, u′ ∈ U with u 	= u′, and
– for each u ∈ Dom(T ) there is a u′ ∈ U with T (u) ⊆ T (u′),

then ≈ is a unique maximal equivalence on Dom(T ), and is closed. ��

4 Conformance Testing

In this section, we consider some standard techniques for constructing confor-
mance test suites: the W-method by Vasilevski [Vas73] and Chow [Cho78], an
optimization by Fujiwara et al. [FvBK+91] called the partial W-method (or Wp-
method), and another optimization described by Lee and Yannakakis [LY96].

Definition 5. Let M = (D, Q, δ, q0, λ) be an FSM. A set U of input sequences
containing ε is called

– a state cover set if for each state q ∈ Q there is an input sequence u ∈ U
with δ(q0, u) = q, i.e., for each state of M, some sequence in U leads to it

– a transition cover set if whenever δ(q, a) = q′ for some q, q′ ∈ Q and a ∈ Σ,
there is an input sequence u with δ(q0, u) = q such that both u ∈ U and
ua ∈ U . ��

The literature has slight differences in how such sequences can be chosen. For
instance, Lee and Yannakakis [LY96] consider state and transition cover sets
that are generated by a spanning tree for M.

Say that a sequence w ∈ Σ∗ separates the states q and q′ if λ(q, w) 	= λ(q, w′).

Definition 6. Let M = (D, Q, δ, q0, λ) be an FSM.

– A set W of sequences is a characterizing set for M (or separating set) if for
each pair q, q′ ∈ Q of states it contains a sequence w ∈ W which separates q
and q′.

– A collection {Wq}q∈Q of sets of sequences Wq, one for each q ∈ Q, is called
• a separating family [LY96] for M if for each pair q, q′ ∈ Q of states

there is a sequence w ∈ Wq ∩ Wq′ which separates q and q′,
• a family of identification sets for M if for each pair q, q′ ∈ Q of states,

the set Wq contains a sequence w ∈ Wq that separates q from q′, ��
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A separating family is also a family of identification sets, but not vice versa.
A family of identification sets can be transformed into a separating family by
adding the necessary sequences to the sets. A characterizing set can be thought
of as a separating family, where all sets are identical. A characterizing set (and
hence also a separating family) exists for every machine that is minimized.

In the following, fix an FSM M = (D, Q, δ, q0, λ). Let

– V be a transition cover set; we denote by vq,a the sequence leading to q such
that both vq,a ∈ V and vq,aa ∈ V ,

– U be a state cover set included in V ; we denote by uq the sequence leading
to q (i.e., uq = vq,a for some a),

– W be a characterizing set,
– {Zq}q∈Q be a separating family,
– {Wq}q∈Q be a family of identification sets.

Definition 7. A set I ⊆ Σ∗ is called

– A W-set if it is of form V W ,
– A Wp-set if it is of form

U

⎛
⎝ ⋃

q∈Q

Wq

⎞
⎠ ∪

⋃
q∈Q,a∈Σ

vq,aaWδ(q,a)

– A Z-set if it is of form⋃
q∈Q

vq,aZq ∪
⋃

q∈Q,a∈Σ

vq,aaZδ(q,a)

��

Theorem 2 (Conformance Test Suites). Let M = 〈Q, δ, q0, λ〉 be an FSM
and let I ⊆ Σ∗ be a W-set, a Wp-set, or a Z-set. Then the observation function
M|I is a conformance test suite for M.

Proof. We consider the case of Wp-set; the other cases are analogous. Let T be
the observation structure defined by Dom(T ) = U ∪ {vq,aa : q ∈ Q, a ∈ Σ},
where Dom(T (uq)) = ∪

q∈Q
Wq for uq ∈ U and Dom(T (vq,aa)) = Wδ(q,a) for

vq,a ∈ {vq,a : q ∈ Q, a ∈ Σ} \ U , such that OT = M|I . Since the observation
structure is derived from M, and by the properties of identification sets, it
follows that U is a set of access strings such that the conditions in Proposition 1
are satisfied. Hence the conclusions of Theorem 1 hold, from which the result
follows. ��

The W-method by Vasilevski [Vas73] and Chow [Cho78] uses W-sets. The
Wp-method by Fujiwara et al. [FvBK+91] optimizes by using (hopefully smaller)
identifications sets to reduce the size of the test suite; another optimization, using
separating families (here defined using what we call Z-sets) is described by Lee
and Yannakakis [LY96]. Since in the worst case, each identification set Wq has
the same cardinality as the characterizing set W , upper bounds on sizes of the
test suite generated by the three methods are the same: O(n2 |Σ|).
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5 Automata Learning

We here briefly review some techniques of Automata Learning. The techniques
reviewed here work by making queries about the output of an IUT in response
to a set of input sequences, and recording the results in what can be represented
as an observation structure T . When T has been developed so that it satisfies
certain properties, then an automaton is conjectured from T . This conjecture
is then compared by other means (idealized by a so-called “equivalence query”)
with the IUT. If the conjecture is equivalent to the IUT, the learning process
stops, otherwise the equivalence query returns an input sequence on which the
conjecture and the IUT disagree, and the learning process continues. It is desir-
able that each hypothesis has strictly more states than the previous one, in order
that the process monotonically converges to a correct conjecture in reasonable
time. This can be ensured if the properties required for making a hypothesis
ensure that only one automaton can be inferred from T .

In this section, we present conditions on T that are defined by the L∗ al-
gorithm of Angluin [Ang87] using observation tables, and the observation packs
defined by Balcázar et al. [BDG97].

Let T be an observation structure. Two situations are particularly interesting
and separately well-studied in the literature

Definition 8. Let T be an observation structure, where Dom(T ) = U ∪UΣ for
a set U of access strings. T is an

– observation table if Dom(T ) is prefix-closed, and all Dom(T (u)) for
u ∈ Dom(T ) are equal and suffix-closed.

– observation pack if ε ∈ U , and
• T (u) 	≈ T (u′) for u, u′ ∈ U with u 	= u′, and
• for each u ∈ Dom(T ) there is a u′ ∈ U with T (u) = T (u′). ��

Based on these definitions, we obtain:

Theorem 3 (Uniqueness Theorem). Let T be an observation structure with
U as in Definition 8. If T is either

– an observation table, where ≈ is U -closed and U -consistent, or
– an observation pack, where ≈ is U -closed,

then the relation ≈ on Dom(T ) is an equivalence relation. Let n be the number
of equivalence classes of ≡. Then any automaton A with at most n states, which
is conformant with OT , is isomorphic to 〈T , U〉/ ≡.

Proof. It follows from Definition 8 that ≈ is an equivalence relation. The rest
follows immediately from the Characterization Theorem 1 ��

Please note that the Uniqueness Theorem does not guarantee the existence
of a conformant automaton with n states. However, for observation tables we
can give such a guarantee.
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Theorem 4 (Existence Theorem). Let T be an observation table with U as
in Definition 8, where ≈ is U -closed and U -consistent. Then 〈T , U〉/ ≈ |= OT .

This theorem is proved in [Gol78, Ang87]. Our Existence Theorem is a straight-
forward generalization.

6 Relating Testing and Learning Techniques

Conformance testing and learning are both concerned with establishing a rela-
tionship between a formal model and a black box system. Both techniques work
by constructing a particular set of tests serving for the observation of the black
box system. These conceptual similarities should be clear from the previous sec-
tions.

In fact, this similarity even reaches down to the level of technical detail of
observation structures:

From Automata Learning to Conformance Testing

– Let T be an observation table with U as in Definition 8, such that ≈ is
U -closed and U -consistent. Let W denote Dom(T (u)) for some u ∈ U (the
choice of u is irrelevant by Definition 8). If M is isomorphic to 〈T , U〉/ ≈,
then the set (U ∪ UΣ)W is a W-set for M.

– Let T be an observation pack with U as in Definition 8, such that ≈ is
U -closed. If M = 〈T , U〉/ ≈ is conformant with OT , then the set⋃

u∈U

u Dom(T (u)) ∪
⋃

u∈U,a∈Σ

ua Dom(T (ua))

is a Z-set for M.

From Conformance Testing to Automata Learning Let M = 〈Q, δ, q0, λ〉 be an
FSM and let U be a state cover set of M, and UΣ the corresponding transition
cover set.

– If U is prefix-closed, and W is a suffix-closed characterizing set, then the
observation structure T defined by Dom(T ) = U∪UΣ and Dom(T (u)) = W
for any u ∈ U , with OT = M|(U∪UΣ)W , is an observation table where ≈
is U -closed and U -consistent, such that M is isomorphic to 〈T , U〉/ ≈ and
M |= OT .

– If {Zq}q∈Q is a separating family and

I =
⋃
q∈Q

uqZq ∪
⋃

q∈Q,a∈Σ

uqaZδ(q,a)

is a corresponding Z-set, then the observation structure T defined by
Dom(T ) = U ∪ UΣ and Dom(T (u)) = Zδ(q0,u) for u ∈ U ∪ UΣ, with
OT = M|I , is an observation pack where ≈ is U -closed, such that M is
isomorphic to 〈T , U〉/ ≈ and M |= OT .
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Thus the observation table technique is strongly related to the W-method and
the observation pack technique to the conformance testing technique described
in [LY96].

However, there is also an intrinsic conceptual difference:

– conformance testing solves a checking problem: given a model and a black box
system, it checks for conformance of the two. This allows us to systematically
construct the tests from the given model, and

– learning solves a synthesis problem: given a black box, it synthesizes a model
on the basis of a systematic experimentation process. The tests used here
must be generated online in parallel with the model synthesis.

This conceptual difference becomes particularly clear under the often used as-
sumption that the number of states of the black box system is known to be at
most the number of states of the model n. In this case, we have:

The construction of a conformance test suite is a systematic and rather effi-
cient process (O

(
n2 |Σ|

)
) that extracts sufficiently many tests from the model

to characterize the model up to isomorphism.
The process of generating tests during the learning process is much more

involved, as there is no model for orientation. Thus we are essentially left with a
systematic search problem. Angluins assumption of an equivalence oracle, which
provides a (minimal) counter example in case of failure, draws a nice dividing
line between the efficient and expensive part:

– Complexity relative to the equivalence oracle: Angluins observation table only
grows polynomially in the size of the resulting model. The original proof
for O

(
n3 |Σ|

)
can straightforwardly be extended to FSMs. Thus there is

only an additional factor n in comparison to the conformance test suite
generation. This factor is due to the fact that one must maintain many
strings as potential state representatives as their redundancy can only be
decided after the learning process has terminated.

– Complexity for realizing/approximating the equivalence oracle: In general it
is impossible to implement an equivalence oracle, and even if the size of the
black box system is known the problem is exponential in this size. Thus
the equivalence oracle is the true bottleneck of automata learning. However,
also here are similarities to conformance testing: a conformance test suite
capturing IUTs which may have k states more than the model also grows
exponentially in k. In fact, one could consider conformance testing of this
more general kind as a good approximation of the equivalence oracle.2

7 Discussion

In this paper, we have established a common framework for investigating the
similarities of conformance testing and automata learning by showing how re-

2 Note, this is usually the line where the interplay of learning and conformance testing
is mentioned.
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sults in one area can be transferred to results in the other and to explain the
reasons for their differences. Both techniques aim at identifying the model struc-
ture underlying a black box system on the basis of a limited set of observations.
Whereas the former technique aims at checking for equivalence with a given
conjecture model, the latter techniques addresses the corresponding synthesis
problem: given a system, it aims at inferring a corresponding model. Our uni-
fied framework makes it possible to directly transfer results between these two
communities or, more concretely, to build tools that easily specialize to tools for
conformance testing or automata learning, respectively.

Beyond this rather technical match, our contribution also directly addresses
the following question: What is the essential information about an automaton
in terms of observations/traces? The similarity of the corresponding character-
izations in the two domains mark them as a ’natural’ choice. And, in fact, the
state of the art here does not seem to leave much room for further optimiza-
tions, at least for the general setting. In particular when considering automata
learning this means that major performance gains, a necessary precondition for
a significant practical impact of this technology, are only possible for restricted
scenarios. In other words, learning will only scale to practically relevant system
scenarios, if its is possible to steer the learning process on the basis of com-
plementary knowledge, e.g. about the structure of the black box systems, its
intended behavior or certain other behavioral characteristics like input enabled-
ness or output determinism. Our first experiments [HNS03, SH03] indicate the
power of exploiting such knowledge, which does not only reduce the learning
effort, but also the size of the model representation. We are currently investigat-
ing, how similar considerations may also be used to minimize conformance test
suites.
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Abstract. Practical specification languages for imperative and object-oriented
programs, such as JML, Eiffel, and Spec#, allow the use of program expressions
including method calls in specification formulas. For coherent semantics of spec-
ifications, and to avoid anomalies with runtime assertion checking, expressions
in specifications and assertions are typically required to be strongly pure in the
sense that their evaluation has no effect on the state of preexisting objects. For
specification of large systems using standard libraries this restriction is imprac-
tical: it disallows many standard methods that mutate state for purposes such as
caching or lazy initialization. Calls of such methods can sensibly be used for
specifications and annotations in contexts where their effects cannot be observed.
This paper formalizes and extends a recently proposed notion of observational
purity, reducing the proof obligation to a familiar one for equivalence of two class
implementations.

1 Introduction

There are a number of uses for identifying pure expressions, i.e., those without side
effects. For example, they admit transformations such as re-ordering and they may be
used without difficulty in program specifications. For verification of programs in object
oriented languages such as Java, it is important to allow annotations (including specifi-
cations and intermediate assertions) to invoke methods whose calls are pure in a more
liberal sense: allowing construction of fresh objects. For example, to return a pair of
values, a pair objects may be created. This notion of purity is used in the JML behavioral
interface specification language [12].

Many software libraries include methods that one would expect to be pure, such as
String.equals in Java, but which in fact mutate preexisting objects for purposes
such as memoization, caching, or lazy initialization. The solution adopted in JML is to
duplicate such library methods with pure ones to be used in specifications, but this is
awkward at best. It has recently been proposed to liberalize the notion further, to allow
methods that have “benign” side effects, i.e., mutation of preexisting objects so long as
these effects are not visible in the context where the method is treated as pure.

Allowing benign side effects is important for specification and program transforma-
tion to scale up to large systems, but it poses challenges: How do such effects interact
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class Cell {
public val : int;
proc pos(c : Cell) : bool { return c.val > 0; } }

class D {
private f , arg , farg : int;
proc pureProd(s : D ,n : int) : Cell {

x : Cell := new Cell ; x .val := s.f ∗ n; return x ; }
proc memoProd(s : D ,n : int) : Cell {

x : Cell := new Cell ;
if n = 0 then x .val := 0; return x ;
elseif s.arg �= n then s.arg := n; s.farg := s.f ∗ n; end;
x .val := s.farg ; return x ; }

proc get(s : D) : int { return s.f }
proc set(s : D , v : int) {s.f := v ; s.arg := 0; } }

Fig. 1. Example program in simple language with class-bound procedures. It maintains an invari-
ant: o.arg �= 0 implies o.farg = o.f ∗ o.arg for all D -objects o

with “modifies” specifications? What is the meaning of an effectful predicate in a pre-
condition? How do effects interact with runtime assertion checking?

A definition of observational purity is proposed by Barnett et al. [6] along with a
static analysis based on secure information flow [18] combined with verified program
assertions. But the definition has been criticized as ad hoc and obscure and the checking
technique seems rather specialized. In this paper we disentangle and extend the ideas,
showing how observational purity can be formulated in terms of established notions of
abstraction and encapsulation. This opens the way to using existing methods to verify
observational purity. Moreover, we obtain a sound and general theory without the need
to prove the hardest of the results from scratch.

The key idea is that an observationally pure method is equivalent to one that is
strongly pure in the sense of allowing allocation of new objects but no mutation of
preexisting ones. This requires an account of strong purity, which we have not seen in
the literature. Our account is set in the context of partial correctness; in the conclusion
we describe how the approach can be adapted to total correctness using refinement. The
core difficulties and ideas are already present in the partial correctness setting.

As a simple and general way to justify the use of pure method calls in specifications
and annotations we seek conditions under which “assert Q ” is equivalent to “skip”,
where Q is a boolean expression that may include method invocations as well as speci-
fication constructs such as quantifiers. The notion of equivalence must be compositional,
i.e., a congruence, and correctness-preserving. We base our theory on simulation, the
standard technique for proving equivalence of implementations that differ in their data
representation.

In the sequel a simple but representative example is used; see Figure 1. This program
memoizes a product f ∗ arg in a field farg . In the context of some class B with access
to d : D and i : int one might find expression pos(pureProd(d , i)) in a specification.
The argument for allowing this is that, although it has an effect on the heap, it changes
no preexisting objects and thus cannot interfere with the meaning of other terms of
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the asserted formula. Another argument for allowing it is that one could turn runtime
assertion checking on or off without affecting the outcome from the program: the fresh
object returned by pureProd is examined in evaluating the asserted formula but then
discarded. This could have an effect, e.g., via out-of-memory condition; or via pointer
arithmetic because it affects where the next allocation takes place. But for many purposes
none of these sorts of observation are of interest. It is under such idealization that our
results are of interest.

Strong purity is a property of a procedure in isolation. Observational purity is a
property of a class (or module) in which the effects of the observationally pure procedure
are encapsulated. Procedure memoProd in Figure 1 is observationally pure, but this
depends on cooperation by the other procedures, which neither interfere with the cache
nor expose it. Moveover, memoProd is observationally pure outside its declaring class
D , meaning that if it occurs in Q then assert Q is equivalent to skip only in the
context of a class other than D .

Outline. Section 2 formalizes a simple language sufficient to illustrate the ideas. Sec-
tion 3 defines strong purity which admits pureProd in Figure 1. A notion of equivalence
is defined and justified, such that assert Q is equivalent to skip for strongly pure Q .
Section 4 adds visibility to the language in order to formalize a notion of observational
purity. It is shown that assert Q is equivalent to skip for observationally pure Q ,
but for a notion of visible equivalence that is not a congruence. Section 5 generalizes
equivalence to simulations, which are congruences. Section 6 concludes. Most proofs
are omitted for lack of space.

Notation. We write f v for application of function f to v . Application associates to the
left and binds more tightly than other binary operators. For subset X of the domain of
f , we write X � f for the restriction of f to X . And v �−f denotes f with v removed
from its domain. We write [f | v �→u] for overriding or extending f to map v to u .
Relational operators like ∼ bind less tightly than others such as � , e.g., dom h � k ∼ h
is parsed as ((dom h) � k) ∼ h . The product of relations α, β is written α · β .

2 Illustrative Language

We consider a procedural language with dynamically allocated mutable objects, as this
suffices to expose the main ideas. The syntax is given in Table 1. A program consists
of a collection of class and procedure declarations The declaration of a class named
C gives its fields. A distinguished field, type , gives the class name of an object; it is
not allowed to be the target of assignment. Because we do not consider subclassing,
we need not distinguish a “self” parameter for special treatment. In fact for simplicity
in the formalism we consider only procedures that return a value and have exactly one
parameter (passed by value). For each procedure p a term, body p , should be given.
In Section 4 we add visibility control for fields and thus associate procedures with
classes as in Figure 1. Non-local variables and static fields are omitted. In order to avoid
unilluminating complications in the proofs, we assume there are no recursive procedures.
It should be straightforward to extend the results to these and other program constructs
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Table 1. Grammar of effectful terms

C ,D ∈ ClassName p ∈ ProcedureName x , y ∈ VarName f ∈ FieldName
M ,N ,Q ::= assert M

| M = M equality test, for values
| x read local variable
| x := M write local variable
| M .f read field of heap object
| x .f := M write field of heap object
| new C reference to freshly allocated object of class C
| p(M ) invoke procedure p on argument M
| null | skip | M ;M | if M then M else M | while M do M | var x in M

as well as specification constructs such as quantifiers and regular path expressions. What
we need is that the language satisfies Propositions 1 and 20 in the sequel.

The details of typing, although important to preclude pointer arithmetic, are ignored
in the formalism due to space limitation.

Because we focus on side effects of expressions, we refrain from distinguishing
between expressions and commands; the short word term is used for both.

Semantics. The language is deterministic; in particular an arbitrary but deterministic
memory allocator is used. Purity, which is about effects, does not depend on determinacy.
Of course determinacy for assertions is important to facilitate reasoning.

A store is a finite mapping from identifiers to primitive values (booleans, integers,
locations). An object state is just a store; the domain is the object’s field names including
the distinguished name, type , that records the class of the object. A heap is a finite
mapping from locations to object states. A state is a pair (h, s) where h is a heap and
s is a store. The idea is that the domain of s has local variables and parameters for a
particular procedure.

A special variable, res , is present in the store part of every state, but is not allowed to
occur in the program text. It is used in the semantics like a temporary register, to record
the value of a term. This formalization helps streamline subsequent definitions, e.g., a
single definition for equivalence of stores serves for both the value and effect of a term.

For partial correctness it suffices to use a relational (evaluation) semantics; Table 2
gives representative cases. For term M , the relation M , · → · on states is written
M , h, s → k , t and interpreted to mean that in initial state (h, s) execution of M can
yield outcome (k , t) . To model that M diverges from (h, s) , there is no (k , t) such
that M , h, s → k , t .

For invocation of a procedure named p , execution of the body of p affects the
variables in scope for the body, namely res and the parameter, but only the value of res
is needed for semantics of the invocation. The auxiliary relation −|p|→ is defined by

h, s −|p|→ k , v ⇐⇒ M , h, s → k , t and v = t(res) for some t , where M = body p.

This gives the meaning of a procedure in terms of its local state.
The semantics makes assert M yield a final state only if M yields a final state

(k , u) in which u(res) is true. The final state of the assert retains the effect of M on
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Table 2. Semantics for selected terms. We assume that fresh is a total function from heaps to
locations such that fresh h �∈ dom h . We abbreviate a nested update to field f by [h | o.f �→v ]

If M is . . . then M , h, s → k , t iff . . .

null k = h and t = [s | res �→null]
skip k = h and t = s

x k = h and t = [s | res �→s x ]
x := N N , h, s → k , u and t = [u | x �→ u(res), res �→ s(res)] for some u

N .f N , h, s → k , u and u(res) �= null and t = [u | res �→k(u(res)).f ] for some u

x .f := N s x �= null and N , h, s → g , u and t = [u | res �→s(res)]
and k = [g | s x .f �→u(res)] for some g , u

assert N N , h, s → k , u for some u with u(res) = true , and t = [u | res �→s(res)]
new C k = [h | o �→default C state] and t = [s | res �→o] where o = fresh h

p(N ) N , h, s → g , r and g , arg(r(res)) −|p|→ k , v and t = [r | res �→v ]
for some g , r , v , where arg(y)=̂[x �→y , res �→default ] and x is the parameter of p

the heap and on the store, except that res has its initial value —otherwise an assert
could never be equivalent to skip .

As an illustrative but otherwise useless example, consider execution of the term
“x .f ;assert ((y := 1) = 2)” from initial state (h, s) . Evaluation of x .f changes the
store to [s | res �→v ] where v is the value of field f of object s x (i.e., v = h(s x ).f )
and there is no outcome if s x is null. Next, y := 1 is executed, updating y but restoring
res to v . Then the equality is evaluated, comparing v with 2. If they are equal, the final
store is [s | res, y �→ v , 1] because the semantics of assert , like := , discards the
intermediate res values. If v �= 2 there is no outcome.

The semantic definitions do not explicitly impose the obvious condition that terms
are evaluated in the context of a suitable initial store (that includes all free variables of
the term) or that the final store has the same domain. Like typing, the precise conditions
can easily be provided by the interested reader. To prove the results in the sequel, it is
important to confine attention to closed states (h, s) , i.e., those such that every location
that occurs in s or in an object field in h is in dom h . (More precisely, if o is in rng s
or in rng r for some object state r in rng h then o is in dom h .) The following is easily
proved for the language in Table 1.

Proposition 1. If M , h, s → k , t and (h, s) is closed then (k , t) is closed, dom s =
dom t , and dom h ⊆ dom k .

3 Strong Purity

A strongly pure term is one that does not write fields of any initially existing objects.
Nor does it write any local variables except possibly res .

Definition 2. Term M is strongly pure iff M , h, s → k , t implies dom h � k = h and
res�−t = res�−s . Procedure p is strongly pure iff h, s−|p|→k , v implies dom h �k = h .
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In this and subsequent definitions we abuse notation for brevity, omitting universal
quantifiers (e.g., for h, s, k , t after the first “iff”).

As an example, pureProd from Figure 1 is strongly pure, but memoProd is not.
In general, strong purity allows that in the final store res may point to a new object
from which other new objects are reachable, and these may point to preexisting objects
—but preexisting objects are not mutated and in particular do not point to the new ones.
The update x .f := y is not strongly pure but {var x in x := new C ; x .f := y} is.
A conservative static analysis for strong purity is easy: check for complete absence of
assignments and field updates (except initializers). To admit cases in which new objects
are repeatedly updated, pointer analysis can be used [19].

For a procedure p , a sufficient condition for p to be strongly pure is that body p is a
strongly pure term. This is not necessary because body p could assign to the parameters
but only the final value of res is used. The important fact is that if p and M are strongly
pure then so is the invocation p(M ) .

Equivalence Modulo Renaming. Our objective is to justify invocations of pure methods
in assertions by showing that such an assertion is the same as skip . For this purpose we
need a suitable notion of equivalence. For example, assert pos(pureProd(a, i)) is not
semantically equal to skip , because it allocates a new Cell object. This object is only
used in evaluation of the asserted formula; afterward it is unreachable, but nonetheless
the final state is not identical to the final state after skip .

To formalize a suitable notion of equivalence we adopt a standard technique: state
(h, s) is equivalent to (h ′, s ′) if there is a bijective renaming from dom h to dom h ′

by which s, s ′ correspond and so do all object states. We use the term location bijection
for a partial bijective relation on locations.

Definition 3. (∼β ) Let β be a location bijection. Define relation ∼β on values by
v ∼β v ′ iff either v , v ′ have primitive type and v = v ′ , or v = null = v ′ , or
(v , v ′) ∈ β . For stores with the same domain, define s ∼β s ′ iff s x ∼β s ′ x for all
x ∈ dom s . For heaps, h ∼β h ′ iff dom β ⊆ dom h , rng β ⊆ dom h ′ , and h o ∼β h ′ o′

for all (o, o′) ∈ β . For states, (h, s) ∼β (h ′, s ′) iff h ∼β h ′ and s ∼β s ′ .

Note that every variable in a store must be related. Hence if a pair of locations o, o′ are
related by β then locations in all fields of h o and h ′ o′ must be related. In particular,
h o type = h ′ o′ type , as we treat the classname-valued field type like a primitive type.
But there may be locations in dom h and in object fields in h that are not in the domain
of β (and in dom h ′ but outside the range of β ).

These relations are easily shown to be symmetric and we use this without remark
in the sequel. A kind of transitivity holds, via composing bijections; what we need is
in Lemma 12 in the sequel. A kind of reflexivity holds: (h, s) ∼δ h (h, s) where δ h
denotes the identity relation on dom h . The notation δ h is used extensively in the
sequel. For example, it lets us reformulate strong purity as follows.

Lemma 4. M is strongly pure iff M , h, s → k , t implies k ∼δ h h and res �−t ∼δ h
res �−s .

Equivalence for states is lifted to terms in a straightforward way, suited to partial
correctness and dynamic allocation.
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Definition 5. (≈ ) For terms M ,M ′ to be equivalent, written M ≈ M ′ , means that if
(h, s) ∼β (h ′, s ′) , M , h, s → k , t , and M ′, h ′, s ′ → k ′, t ′ then there is γ ⊇ β such
that (k , t) ∼γ (k ′, t ′) .

Here the implicitly universally quantified β, γ range over location bijections, so γ is
the same as β for preexisting locations.

As an example, new C is not equivalent to skip because new updates res . On
the other hand, skip is equivalent to the block {var x in x := new C ; } which
allocates an object that is unreachable in the final state. From initial bijection β the
witnessing γ is also β , which does not have the fresh object in its domain. As another
example, x := new C ; x1 := new D ≈ x1 := new D ; x := new C . This can be
shown by taking γ = β ∪ {(a, d), (b, c)} if the left side allocates objects a, b and the
right allocates c, d (in that order). Note that {var x in x := new C} would not be
equivalent to skip if we used a semantics for assignment that had an effect on res .

Theorem 6. If Q is strongly pure then assert Q ≈ skip .

Proof. Suppose (h, s) ∼β (h ′, s ′) , (assertQ), h, s → k , t , and skip, h ′, s ′ → k ′, t ′ .
We must choose γ ⊇ β and show (k , t) ∼γ (k ′, t ′) ; we choose γ = β . By semantics
of assert we have Q , h, s → k , u for some u . By strong purity of Q we have
dom h�k = h . By Definition 3 we have dom β ⊆ dom h , whence, using dom h�k = h
and h ∼β h ′ , we obtain k ∼β h ′ . Hence (k , s) ∼β (h ′, s ′) . By strong purity of Q we
have res �−u = res �−s and by semantics of assert we have t = [u | res �→s(res)] ,
hence t = s . By semantics of skip we have (h ′, s ′) = (k ′, t ′) , so we conclude that
(k , t) ∼β (k ′, t ′) . ��

What remains is to justify that this equivalence is respected by any context and to
justify that the equivalence relation is not too coarse. Regarding contexts, we have the
following which is straightforward to prove for the language in Table 1. (It is instructive
to prove the case for p(M ) because it fails for the relation ≈C in the sequel.)

Proposition 7. (congruence) If M ≈ N then C[M ] ≈ C[N ] for all contexts C[−] .

Observation and Specification. Unreachable objects cannot be detected by ordinary
source program constructs, but what about the predicate (∃o • o.type = C )? Two
implementations that are related by ≈ might be distinguished by a specification with
postcondition (∃o • o.type = C ) . The could also be distinguished by a postcondition
involving address arithmetic. (Congruence would also be broken.)

The decision in languages like JML to allow strongly pure method calls in specifica-
tions is only sound if predicates are restricted so they cannot make undesired distinctions.
We aim for results that are generally applicable so we aim for minimal semantic condi-
tions rather than considering syntax for formulas. This is important because verification
systems often use a shallow embedding of formulas in the language of a theorem prover.
One condition is that predicates should not depend on particular locations, i.e., they
should respect bijective renaming. Another condition is garbage-insensitivity, which
would disallow the example above.

Let reach(h, s) be the set of locations reached transitively from s . We define
gc(h, s) = (reach(h, s) � h , s) . For set ψ of states, we say that ψ is healthy iff
(h, s) ∈ ψ implies (k , t) ∈ ψ whenever gc(h, s) ∼β gc(k , t) .
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Lemma 8. (a) If (h, s) ∼β (h ′, s ′) then gc(h, s) ∼γ gc(h ′, s ′) where γ is obtained
by restricting β , to wit γ = β ∩ (reach(h, s)× reach(h ′, s ′)) .
(b) Suppose M ≈ N , M , h, s → k , t , and N , h, s → k ′, t ′ . If ψ is healthy then
(k , t) ∈ ψ iff (k ′, t ′) ∈ ψ .

A straightforward consequence of Lemma 8(b) is the following. We refrain from
spelling out the straightforward notion of satisfaction for partial correctness.

Corollary 9. Suppose M ≈ N . Then for any pre, post specification where post is
healthy, M satisfies the specification iff N does.

Strongly Pure Terms in Context. A direct consequence of Proposition 7 and Theorem 6
is the following.

Corollary 10. If Q is strongly pure then C[assert Q ] ≈ C[skip] for all C[−] .

With this we have justified the use of calls to strongly pure procedures in assertions.
If method calls in Q are strongly pure then Q is so; and then by Corollary 10 the assert
can be replaced by skip . This replacement is correctness-preserving, by Corollary 9.

4 Observational Purity

Our objective is to find a notion of purity that validates a result like Corollary 10 but
allows updates of preexisting fields. Clearly not all updates can be allowed. For ex-
ample, suppose Q is an invocation p(x ) where boolean-valued p checks whether
x .f is positive but also sets x .f to 0 . For the context −; y := x .f we then have
assert Q ; y := x .f �≈ skip; y := x .f Sensible updates are to encapsulated state as
in Figure 1.

Visibility. A familiar notion of encapsulation suffices for our purposes. A field f of
class C may or may not be visible in methods of class D . Two heaps are equivalent, as
viewed in code of class C , if corresponding objects have corresponding values for all
visible fields. It is well known that field access is inadequate to achieve encapsulation;
additional restrictions on heap sharing are needed to prevent interference with objects
that are intended to be private. For our purposes we need not formalize a discipline such
as ownership types [9, 1] to control aliasing. The requisite assumptions can be expressed
using the location bijection; a location not visible in a particular context is not in the
bijection.

To impose visibility restrictions, we assume that each procedure p is declared in
some class, denoted class p . Furthermore, for each class C there is a set visC of fields
visible in C . (We assume that distinct classes have disjoint field names and we are
not modelling subclasses or inheritance). This encoding can represent private, global,
and module-scoped visibility. For an object o ∈ dom h , visC � h o is the part of the
object state h o that is visible in code of class C . If class p = C then the only fields
that may be read or written in body p are those in visC . The semantics is revised in a
straightforward way, writing C ,M , h, s → k , t to make explicit that M is executed as
a constituent of a procedure of class C .
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Definition 11. (∼C
β , ≈C ) For heaps, define h ∼C

β h ′ iff dom β ⊆ dom h , rng β ⊆
dom h ′ , and visC �h o ∼β visC �h ′ o′ for all (o, o′) ∈ β . For states, define (h, s) ∼C

β

(h ′, s ′) iff s ∼β s ′ and h ∼C
β h ′ . For terms, M ≈C M ′ iff (h, s) ∼C

β (h ′, s ′) ,
C ,M , h, s → k , t , and C ,M ′, h ′, s ′ → k ′, t ′ implies there is γ ⊇ β such that
(k , t) ∼C

γ (k ′, t ′) .

Note that ∼β ⊆ ∼C
β , because ∼C

β is ∼β with no fields hidden. Note also that for
the store component of a state it suffices to use relation s ∼β s ′ because the store
models local variables and parameters. (We omit global variables and static fields.) The
following technical results are needed for later proofs.

Lemma 12. If h ∼α g and g ∼C
β k then h ∼C

α·β k . If δ h ⊆ β , h ∼δ h g , and g ∼C
β k

then h ∼C
δ h k . If h ∼C

β k and γ ⊇ β then h ∼C
γ k provided that dom γ ⊆ dom h

and rng γ ⊆ dom k . Similarly for stores.

Observational Purity. Our goal is for assert Q ≈C skip to hold provided that Q has
no effect observable in class C —e.g., Q is a call p(x ) that changes fields of x but
only fields private to D with D �= C . Following the pattern of Lemma 4 we adapt the
definition of strong purity to one using the visible relations.

Definition 13. Term M is observationally pure outside D provided that the following
holds for all C �= D . If C ,M , h, s → k , t then k ∼C

δ h h and res �−t ∼δ h res �−s .
Procedure p is observationally pure outside D iff h, s−|p|→k , v implies k ∼C

δ h h
for all C �= D .

Procedure memoProd of class D in Figure 1 is observationally pure outside D . It
updates fields of preexisting objects but those fields are not visible outside D and the
updates do not make it possible to reach the newly allocated object (return value). For
initial heap h , the new object is not in the range of δ h .

As in the case of strong purity, a sufficient but not necessary condition for a procedure
to be observationally pure is that its body is. Moreover, if p and M are observationally
pure outside D then so is p(M ) .

Fact 14. If Q is observationally pure outside D then assert Q ≈C skip for all
C �= D .

This result is not yet satisfactory, however, because unlike the case of strong purity we
do not get congruence in general. That is, M ≈C M ′ does not imply C[M ] ≈C C[M ′]
(compare Proposition 7).

Example 15. Consider the term pos(memoProd(y , i)) , evaluation of which may well
update y .arg and y .farg . By Fact 14, assert pos(memoProd(y , i)) ≈C skip More-
over the procedures of D do not leak information about fields updated by memoProd ,
so for example we have (assert pos(memoProd(y , i))); get(y) ≈C skip; get(y) .
But suppose D declared procedure leak(self : D) : int{ return self .arg} . Then

assert pos(memoProd(y , i)); leak(y) �≈C skip; leak(y)
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because the result of leak(y) after memoProd(y , i) is i whereas after skip it is the
initial value of y .arg . The problem is that leak violates encapsulation and makes the
cache indirectly visible. ��

A related problem is that even if h ∼C
β h ′ for all C �= D , it is possible for

there to be (o, o′) ∈ β with h o type = D and moreover h o arg = h ′ o′ arg but
h o farg �= h ′ o′ farg because these fields are not visible outside D . From such a pair of
states, the corresponding pair of results from memoProd are Cell -objects with different
val field; thus �∼C for the final state. Thus memoProd �≈C memoProd .

In general the problem with congruence is that if p �≈C p then M ≈C N does not
imply p(M ) ≈C p(N ) . The problem is solved in section 5.

A shortcoming of Definition 13 is that checking it appears to be a nontrivial and
nonstandard problem. In fact, the check can be reduced to equivalence.

Theorem 16. Suppose M ≈C N for all C �= D , and suppose N is strongly pure. If
N terminates when M does1 then M is observationally pure outside D .

As an example, procedure memoProd is equivalent to pureProd which is strongly pure
and terminates when memoProd does. The termination antecedent is necessary. As an
extreme case, if N never terminates then it is strongly pure and M ≈D N for any M
whatsoever.

A standard technique for proving program equivalence in the presence of encapsu-
lated state is to use simulation relations —unlike mere visible equivalence, a simulation
can track correspondence of internals and impose invariants [14, 10]. Using a simulation
to establish the antecedent of Theorem 16 has the added benefit of congruence.

5 Observational Purity via Simulation

This section gives the main result, equivalence of C[assert Q ] and C[skip] for obser-
vationally pure Q . To this end, we generalize from specific equivalences on states to an
arbitrary relation subject to some conditions. As before, the relation involves renaming
of locations. So what we consider is a ternary relation, written � and read “couples”, on
two heaps and a bijection —or what amounts to the same, a family, indexed by bijections,
of binary relations �β on heaps.

Example 17. In the context of Figure 1, define � by h �β h ′ iff (a) h ∼C
β h ′ for

any C �= D , and (b) for all (o, o′) ∈ β , if h o type = D then h o.f = h ′ o′.f and
both h o and h ′ o′ satisfy the invariant mentioned in the caption of Figure 1. From two
states related by �β , memoProd gives the same results, indeed that is true for all the
procedures of D . ��
If the cache involved other objects, an encapsulation condition would be imposed on
them as well, e.g., via ownership [9, 5]. In our formulation, encapsulation at the level of
classes is sufficient; it need not be instance-based.

To express healthiness conditions on � we use the following routine extensions.

1 M , h, s ⇓ implies N , h, s ⇓ , where M , h, s ⇓ means there exists k , t with M , h, s → k , t .
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Definition 18. Gived a bijection-indexed family of relations �β on heaps, define �β

on states by (h, s) �β (h ′, s ′) iff h �β h ′ and s ∼β s ′ . For terms, M � M ′ iff
(h, s) �β (h ′, s ′) , C ,M , h, s → k , t , and C ,M ′, h ′, s ′ → k ′, t ′ implies there is γ ⊇
β such that (k , t) �γ (k ′, t ′) . Finally, p � p′ iff (h, s) �β (h ′, s ′) , h, s −|p|→ k , v ,
and h ′, s ′ −|p′|→ k ′, v ′ implies there is γ ⊇ β such that k �γ k ′ and v ∼γ v ′ .

Definition 19 (coupling, simulation). A D -coupling is � such that

(a) if h �β k then dom β ⊆ dom h and rng β ⊆ dom k
(b) h �α g and g ∼β k implies h �α·β k
(c) h �β k implies h ∼C

β k for all C �= D

A D -simulation is a D -coupling such that

(d) there is a term Init such that for any C , β, h, s, h ′, s ′ , if (h, s) ∼C
β (h ′, s ′) then

there is some k , t , k ′, t ′, γ with C , Init , h, s → k , s and C , Init , h ′, s ′ → k ′, s ′

and γ ⊇ β and (k , s) �γ (k ′, s ′) .
(e) p � p for every procedure p (in every class)

Items (a) and (b) are simple healthiness conditions (compare Definition 3 and healthy
predicates in Section 3). Item (c) says that the relation reduces to equality modulo
renaming, for classes other than D . A consequence is that (h, s) �β (h ′, s ′) implies
(h, s) ∼C

β (h ′, s ′) for all C �= D .
As usual, the role of initialization is to establish a relation which does not simply

follow from (h, s) ∼C
β (h ′, s ′) because ∼C

β allows arbitrary difference in non-visible
fields. Item (d) is a simple formalization of initialization that follows the pattern used in
the literature for single-instance modules [10]. For dynamic allocation, it is the object
constructor (or default values) that established the relation [2, 8]. To cater for this in
our simple setup, one can take Init to be an assertion of a predicate like “all existing
D -objects have arg = 0 = f ”, or even “no D -objects exist”.2

Item (e) requires all procedures to preserve � . It precludes leak in Example 15. All
procedures in Figure 1 preserve the relation in Example 17. Item (e) appears alarmingly
strong. But for programs using suitable encapsulation, p � p holds for all p provided
that it holds for all p of class D . This is the core of the theory of representation
independence which has been well studied; see Section 6. The preservation result in
such a theory yields the following.

Proposition 20. Suppose � is a D -simulation. If M � N then C[M ] � C[N ] .

We shall take this as an assumption. Such a result depends on several things: conditions
on the relation; conformance of the program with rules to ensure encapsulation (e.g.,
absence of pointer arithmetic, alias confinement); and preservation by the methods of
D , which have privileged access to encapsulated state.

2 This is not a healthy predicate as defined in Section 3, but there is no problem because the
healthiness condition is not needed for preconditions.
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5.1 Using D -Simulations for Purity

Definition 21. Let � be a D -coupling. Then M is observationally pure for � iff for
all C �= D , if C ,M , h, s → k , t then k �δ h h and res �−t ∼δ h res �−s .

p is observationally pure for � if h, s −|p|→ k , v implies that h �δ h k .

Fact 22. Suppose M is observationally pure for some D -coupling � . Then it is ob-
servationally pure outside D .

This Fact, together with Fact 14, implies assert M ≈C skip for C �= D . But
Theorem 16 suggests that for interchangeability of an assert with skip , it is enough
to formulate observational purity as in Definition 13. The role of a coupling is then to
prove the antecedent equivalence of the Theorem and in addition to enjoy a congruence
property. This is worked out in our main result to follow.

Analogous to Theorem 16, one might expect the following: If M � N for N is
strongly pure, and N terminates when M does, then M is observationally pure outside
D . But the property M � N is only applicable to a pair of initially related states and the
relation need not be reflexive, so the proof of Theorem 16 does not directly generalize.
However, we can prove the following Fact. It uses the termination condition that would
be imposed everywhere for simulations in a total-correctness setting.

Definition 23. N terminates when M does, modulo � , iff (h, s) �β (h ′, s ′) and
C ,M , h, s ⇓ implies C ,N , h ′, s ′ ⇓ .

Fact 24. If M � N and N is strongly pure then assert M � skip provided that �
is a D -coupling and N terminates when M does, modulo � .

5.2 Main Result

Two more ingredients are needed. The first is equivalence for properly initialized pro-
grams. The step from simulation to program equivalence requires that the programs
proved equivalent are properly initialized, so that from equivalence of initial states one
gets the coupled states needed to exploit the simulation. In the setting of our formal-
ization, the following is suitable. It can be justified by an analysis of specifications as
in Section 3 but taking into account visibility restrictions on specifications. For lack of
space we omit the details of the justification.

Definition 25 (
.≈C

). Suppose Init is given as in Definition 19. Define M
.≈C

M ′ iff
Init ;M ≈C Init ;M ′ .

The point of using simulations is to get both congruence and the following which
expresses how simulation implies equivalence.

Theorem 26. If M � N and � is a D -simulation then M
.≈C

N for any C �= D .

The last ingredient needed for the main result is a way to compose the main relations.
We have defined several relations on terms and they enjoy various composition properties,
most of which turn out not to help. What we need is the following.
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Lemma 27. Suppose � is a D -simulation and N terminates when M does, modulo

� . If M
.≈C

N and N ≈ Q then M
.≈C

Q .

Theorem 28. Suppose � is a D -simulation and N terminates when Q does, modulo

� . If Q � N and N is strongly pure then C[assert Q ]
.≈C C[skip] for all contexts

C and classes C �= D .

Proof. From Q � N we get C[assert Q ] � C[assert N ] by congruence Proposi-

tion 20. Thus C[assertQ ]
.≈C C[assertN ] by Theorem 26. By strong purity of N and

Corollary 10 we have C[assert N ] ≈ C[skip] . Because all constructs of the language
are monotonic with respect to termination, we have that C[assert N ] terminates when
C[assert Q ] does, modulo � . Thus Lemma 27 applies to yield the result. ��

Our main Theorem 28 avoids the need to use the notions of observational purity
or observational purity for � but it comes at the cost of proving simulation with a
strongly pure term. The alternative is to use observational purity following the pattern of
Corollary 10. This depends on a transitivity condition on simulations that is satisfied in all
the observational purity examples we have considered. It is not included in Definition 19
because no other results depend on it. Transitivity does not make sense for simulations
used for changes of data representation, where the source and target of the relation are
different state spaces.

Theorem 29. Suppose � is a D -simulation such that �α · �β = �α·β for all α, β .
If Q is observationally pure for � then assert Q � skip .

Corollary 30. Suppose � is a D -simulation such that �α · �β = �α·β . If Q is
observationally pure for � then for any context C[−] and any class C �= D we have

C[assert Q ]
.≈C C[skip] .

Proof. By Theorem 29, Proposition 20, and Theorem 26. ��

6 Conclusion

To avoid logical anomalies and misleading results from runtime assertion checking,
practical verification systems impose various purity requirements for specifications and
annotations: no invocations allowed (ESC/Java [11]), strong purity checking (JML [12]),
or unchecked advice to programmers (Eiffel [13]). But for verification to scale to large
systems it is important to consider as pure even procedures which, for reasons such as
caching, update preexisting objects, provided that the updates are unobservable.Absence
of anomalies for formula Q can be made precise by equating assert Q with skip —
the presence of Q has no effect on the properties of following code— using a notion of
equivalence that is a congruence and correctness-preserving.

Our main result shows that Q satisfies the equivalence, in the context of some class
C , provided that it simulates, in the context of a different class D , a strongly pure term.
The main application is where Q invokes procedures of D and is used to reason about
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procedures of C . The result reduces admissibility of Q to a proof obligation (simulation)
together with static analysis for strong purity rather than a more specialized analysis.
To apply our results one needs a method for defining D -simulations. In particular, it is
essential that condition (e) in Definition 19 need only be checked for procedures of D ;
for procedures of C �= D it should follow by a preservation/congruence theorem. Such
theories (analogs of our Proposition 20 and Theorem 26) have been developed for many
sorts of languages [14, 10]). For Java-like languages, Banerjee and Naumann [2] give
such a theory under the assumption of suitable alias control which can be achieved using
static analysis [2, 15, 9]; a similar result has recently been given [4] using state-based
enforcement of encapsulation [5, 16]. Such results are difficult to prove for complex
languages so it is fortunate that we could treat observational purity in terms of existing
formulations.

In justifying the choice of program equivalence we have uncovered an issue for strong
purity. If, in postconditions, it is allowed to use quantification over all allocated objects,
even unreachable ones, then pre/post specifications can “observe” allocation and even
strong purity is not sound. Quantifications over all allocated objects have been used in
some settings, e.g., the program invariants of the Boogie discipline [5, 16], but in that
context programmer-defined predicates are in fact restricted to reachability in terms of
auxiliary fields. Pierik et al. [17] advocate global invariants such as “there is at most one
C -object” which are apparently incompatible with strong purity.

The most closely related work is that of Barnett et al. [6], where a seemingly ad
hoc condition combining Definitions 13 and 21 is proposed. Rather than drawing on
the general theory of encapsulation and simulation, the work uses the noninterference
property from information security. There may be some advantage to that approach
in avoiding the full generality of simulation theory. It is being explored as part of the
Spec#/Boogie project [5]. The full version of [6] will include examples of observationally
pure procedurs from the .NET libraries. Leavens et al. [12] discuss the rationale and static
analysis for strong purity in JML. Sălcianu and Rinard [19] give a more precise static
analysis for the strong purity condition. Program equivalence modulo garbage collection
has been studied by Calcagno et al. [7] and others [2].

To extend observational purity to total correctness, equivalence is replaced by refine-
ment of assert Q by skip . Suitable simulation theory for a Java-like languages can
be adapted from existing work [8, 2, 4]. We conjecture that the extension to concurrency
is also straightforward. Procedures called in assertions need to be deterministic in order
to apply logical reasoning, but our theory depends in no way on determinacy.

We leave open the question of completeness: if M is observationally pure outside
D then is it simulated by some stongly pure N ? Given such M , it is straightforward
to define a relation R such that R is strongly pure (semantically) and suitably coupled
with M . But the coupling needs to be a simulation for all procedures of D and R needs
to be denoted by a term in the language.
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Abstract. We present and validate a theoretical model of methodolog-
ical works in Software Engineering that, without claiming for complete-
ness, allows us to investigate the role of ontologies in the problem solving
process related with the development of software. Our main conclusion
is the potential of ontologies as resources for an individual to think dur-
ing problem solving. We argument that suitable ontologies can support
solving strategies as well as motivate their invention. We also conclude
the importance of accompany an ontology with knowledge that guides
the engineer in reasoning with its concepts.

The model regards a methodological work as an heterogeneous theory
about a class of problems and about a number of conceptual elements.
Some of the elements are ontologies, which play the role of identifying and
relating aspects of the knowledge about the class of problems, making up
novel perspectives on the problems that may promote solving strategies.

For illustration purposes, we take Jackson’s “Problem Frames” as a
case study. We analyse this work through the former model, identify-
ing the ontologies, guides, and promoted strategies. Then we propose an
alternative ontology, based on that used in the KAOS approach; we refor-
mulate some parts of Jackson’s work through this ontology and propose
a strategy as well as some guides.

Keywords: Ontologies, Methodologies, Modelling, Problem Solving,
Cognitive Science.

1 Introduction

Modelling languages have been used for years in Software Engineering, and they
are currently broadly extended. Textbooks and papers are plenty of modelling-
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related concepts as “model-driven engineering”, “Model-Driven Architecture”,
and “Unified Modeling Language”. In a previous paper we investigated the uses
of these languages in the context of several software development methodolo-
gies, finding that the most popular use is that of description (Cañete et al.,
[1]). Frequently described subjects are the system-to-be and its environment.
However, we also discovered that the models created with some languages are
used for reasoning about some aspect of the development problem, allowing to
obtain useful conclusions that, in some cases, could even motivate some design
decision1. This fact leads to an interesting question: what is the relation between
modelling languages and human reasoning during problem solving? This paper
aims to contribute to answer this question. The followed approach is the study
of ontologies in methodological works. We base this decision on three arguments.

First, the semantic conceptualization that is the basis of any modelling lan-
guage can be regarded an ontology. Second, ontologies allow to acquire, organize,
represent, and deal with knowledge. These activities are important for anybody
that is solving a problem. Besides, in the case of solving a software development
problem, it is necessary to have general knowledge about aspects of the class
which the problem belongs to. And it is also useful to have some general knowl-
edge about heuristics and other kinds of well-founded guides that suggest how
to address the problems in the class. In conclusion, knowledge is important in
problem solving, and ontologies are good instruments for managing knowledge.
Therefore, a software engineer is likely to use several kinds of ontologies while
she reasons in the resolution of a problem. The third argument to base our ap-
proach is that methodological works can be regarded as sources for the previously
cited general knowledge (we will prove this later in this paper). In conclusion:
ontologies and methodological knowledge are software engineer’s tools in rea-
soning during problem solving. Their study seems a promising starting point for
answering the question that we have formulated at the beginning of this section.

To this aim, we propose and validate a theoretical model of methodological
works and we use it as an instrument for investigation. We obtain a number
of predictions from the theoretical model, including the claim that ontologies
may promote reasoning strategies for problem solving. The methodological work
“Problem Frames” (Jackson, [11]) is used throughout this paper for illustration
purposes.

The rest of the paper is organized as follows. Section 2 contains some back-
ground terms from Philosophy of Science that are necessary for the remaining
parts. Section 3 describes and validates the theoretical model. In Section 4 we
reason with the model and obtain a number of predictions. Section 5 summarizes
the conclusions and exposes our current works. We close in Appendix A with an
example of reasoning with ontologies.

1 Note that we are not referring to languages intended to describe the reasoning pro-
cess; this aspect constitutes an interesting research area in which important con-
tributions have been made, particularly those by Potts and Bruns ([17]), and by
Ramesh and Dhar ([18]).
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2 Scientific Theories, Models, Hypotheses, and
Ontologies

In this section we review some terms that we use in the rest of this paper, from
the perspective of Philosophy of Science. The central concept is that of “scien-
tific theory”. There are several philosophical approaches to what a theory is. A
broadly accepted approach is the so-called “semantic view”. It considers that a
theory can be defined by a class of structures that provide an interpretation for
it (a semantics); these structures are called theoretical models or, simply, models.
Models can be defined in a variety of languages, none of which is the basic or
unique expression of the theory. Some contributions to the semantic view are
those by Suppes ([21, 22]), Suppe ([20]), van Fraasen ([7]), and Giere ([8]).

In particular, Giere’s approach ([8]) understands a theory as comprising two
elements: (1) a family of interrelated theoretical models, and (2) various theoret-
ical hypotheses that claim the similarity among models in the family and parts
of the real world, in indicated respects and to some specified degrees of accuracy.
Giere’s theoretical models are conceptual, idealised systems (e.g. those discussed
in mechanics texts) that jointly provide the semantics of a theory. Hypotheses
are true if the models do fit the world in the indicated respects and degrees,
and they are false otherwise. Theoretical models of the same family are related
between them by similarity relations (“resemblance” –Giere, [8], p. 86); in some
cases, they may constitute different approximations to a real world situation.

Morgan and Morrison ([14]) argue that scientific models are instruments for
investigation, and they point out several functions of models as instruments. One
of these functions is to aid in theory construction. The theoretical model that
we have proposed (Section 3) is intended to investigate the relationship between
ontologies and reasoning during the resolution of problems; therefore, the model
contributes to the development of a theory about such relationship.

Giere ([9]) argues that theoretical models can be used for making predictions
about the reality that they represent. If the model is proven to fit the world in
certain respects and to some specified degrees of accuracy, then the predictions
made from the model are also true in the world. Predictions, in turn, allow to
learn with the model, another of the characteristics pointed out by Morgan and
Morrison ([14]). Section 4 describes some predictions obtained from our proposed
model of methodological works.

Ontology is a branch of Philosophy concerned with the study of what exists.
In Computer Science, ontologies are of great interest for knowledge acquisition
and representation, and recently also for Semantic Web. A popular ontology
definition is that by Gruber ([10]): an ontology provides “an explicit specifica-
tion of a conceptualization”. Mylopoulos ([15]) emphasizes the role of ontologies
in acquiring the right concepts to model a world for which one would like to
do computations or knowledge management operations. Jurisica, Mylopoulos,
and Yu ([12]) classify ontologies for knowledge representation into four broad
categories: static, dynamic, intentional, and social.
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3 A Theoretical Model of Methodological Works

In this section we present and validate a theoretical model that fits a class of
methodological works. In spite of its simplicity, the model has been an adequate
instrument for investigation of the role of ontologies in problem solving, allow-
ing us to obtain a number of conclusions in the form of predictions, which are
exposed in the next section. The reality to be modelled is constituted by the
methodological works in Software Engineering. A methodological work is that
aimed to be applied by a practising engineer to any problem in a class, with the
hope of contributing to its resolution. They form a conceptual reality, and we
can find descriptions of them in research papers and textbooks.

3.1 Description of the Model

The first component of our model is a study of the class of problems that are
intended to be solved. The analysis covers different aspects of the problems,
which probably constitute novel approaches to the study of the class. Several
concepts are defined, and the study of some of the identified aspects is presented
through these concepts. Sets of interrelated concepts are grouped in ontologies.

The model also incorporates a number of guides, which are suggestions for the
practising engineer of activities to do. Some of these guides are specific for several
of the former ontologies, suggesting how to use them to achieve some purpose
which, in turn, contributes to the resolution of the problems in the class. A special
type of guides is constituted by logical schemes that, when they are instantiated
by the practising engineer on a concrete problem, result in conclusions that
contribute to the problem resolution (e.g. to conclude to make some design
decision). The ontologies with guides may have a textual or graphical syntax
associated to their concepts, although it is not strictly necessary.

The concepts introduced to study the class of problems can have properties
on their own, from an abstract point of view. A last component of the model is
constituted by these properties, together with the properties derivable from the
former guides.

The above components are related by a constraint: the concepts and guides
must actually contribute to the resolution of the class of problems. If this con-
strains holds and the former studies are correct, the methodological work is
considered to be valid.

3.2 Validation of the Theoretical Model

Giere ([9]) proposes a program to validate theoretical hypotheses, and, hence,
theoretical models. The program is based on making predictions from the theo-
retical model. If such predictions do not agree with experimental data, then the
model does not fit the world and the hypothesis is false. Otherwise, the hypoth-
esis is considered to be true if there are no alternative models that explain the
same predictions.

Seven predictions from our model are presented in the next section where we
also reason the soundness of each one, thus contributing to the validation of the
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Table 1. Some of the problem aspects studied in “Problem Frames”

Aspect Description

A1 There exist classes of typical software problems. Some of these classes have
typical decompositions in terms of others.

A2 The physical, spatial extension of software problems.
A3 The extension of software problems from the viewpoint of the customer’s

needs.
A4 The different roles played by the physical elements of a software problem.
A5 The variability in each class of softw. problems from a physical perspective.
A6 The diversity in the domain nature and its impact in each class of software

problems.
A7 The logical correction of each class of software problems.
A8 The impact of the failure of a reliable domain in a software problem.

Table 2. Some of the concepts defined in “Problem Frames” for studying each problem
aspect. We have put together each group of related concepts in an ontology

Aspect Concepts Ontology

A1 Problem Frame, Information Display Frame, ... O1

A2 Domain, Interface, Phenomenon, Description, ... O2

A3 Requirement, Customer’s Authority, Customer’s Responsibility O3

A4 Operator, Machine, Display, Real World, Workpieces, ... O4

A5 Variant, Description Variant, Operator Variant, ... O5

A6 Flavour, Static Flavour, Dynamic Flavour, ... O6

A7,A8, ... Concern, Frame Concern (A7), Reliability Concern (A8), ... O7

whole model. We have not found an alternative theoretical model that explains
all the predictions.

Besides, our model agrees with Wieringa’s account on design-related research
(Wieringa, [26]). He reasons that, during any design process, both the problem
properties and the solution properties must be studied. According to the author,
this is also applicable to the design of methods.

3.3 Example: Modelling the “Problem Frames” Methodological
Work

The preface of “Problem Frames” (Jackson, [11]) states on page xii: “The central
idea of this book is to use problem frames in problem analysis and structure”. A
“software problem” is a general and incomplete specification of the responsibil-
ities of a software system in the context of a composite system2 in which it is
immersed. Analysis is the problem of identifying the concerns and difficulties of a
software problem. Structure is the problem of designing a correct decomposition
of a software problem into subproblems, which ideally contributes to an easier

2 A composite system includes people, hardware, software, and lexical entities.
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Table 3. The fist column indicates some guides included in “Problem Frames”. The
second column specifies the ontologies that are directly involved in each guide. The
page and chapter references are relative to (Jackson, [11])

Guides Ontologies

G1 (heuristic): identify ancillary problems. This guide is based on
the knowledge that in most software problems there are ancillary
subproblems surrounding the core (p. 293).

O1

G2 (heuristic): identify and address the concerns of the frames that
have already been identified for a problem. This guide is based on the
knowledge that each problem frame has a number of typical concerns
(chapter 9).

O1 + O7

G3 (heuristic): study the software problem beyond the software sys-
tem interface. This guide is based on the knowledge that the software
problem is immersed in and interacts with a composite system (pp.
7–10).

O2

G4 (heuristic): expand your study of the composite system to the
extent that the customer’s responsibilities are covered, without tres-
passing the customer’s authority. This guide is based on the knowl-
edge that the software problem requirements must not be too small
in relation to the customer’s responsibilities, and that the customer’s
authority limits the scope of what the software system may legiti-
mately be designed to do (pp. 29–33).

O2 + O3

G5 (heuristic): a valid way to address the failure detection in the reli-
ability concern of a problem is to insert an information subproblem to
audit failures. This guide is based on knowledge about the reliability
concern (pp. 248–257).

O1 + Relia-
bility Concern
(O7)

development of the software. Therefore, we can summarize the class of problems
which the methodological work is intended for as: “how to analyse and structure
software problems?”.

The approach includes a vast study of numerous aspects of the cited class
of problems. Table 1 shows a possible relation of some of these aspects; other
classifications can also be valid. Several concepts defined in the method for the
study of each aspect have been collected in Table 2, where we have also proposed
a possible grouping of the concepts in different ontologies. The main concept is
“Problem Frame”, which is a synonym for a known class of software problems.
The only concepts in Table 2 that have an associated syntax are those of ontology
O2 together with the concept “Requirement” (in O3).

As we will prove in Section 4.1, some ontological concepts, in addition to
be useful for the study of the class of problems, are also intended to contribute
to the engineer’s reasoning in solving any particular problem of the class. Such
ontologies are associated with guides. In “Problem Frames” we can find guides
to be used with several ontologies, including O1, O2, O3, O4, and O7; Table 3
shows some of them. Some guides as G2 require concepts from several ontologies.
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Note that the ontologies without an associated syntax may also have associated
guides (e.g. O1).

One of the guides intended to help in locating and bounding software prob-
lems is related with the customer’s authority and responsibility (pp. 31–33). We
have identified it as G4 in Table 3. The “customer” is a notional person rep-
resenting all the people who are entitled to contribute to the requirement in a
software problem (Jackson, [11], p. 363). The guide is intended to be used with
the so-called “context diagrams”, which are elaborated from the concepts of on-
tology O2. It suggests that the domains that must be considered in analysing
a software problem must be limited by the customer’s authority, while covering
the customer’s responsibility. But the ontology O2 does not make explicit the
concept of “Domain Responsibility”, so we find that, in practice, the guide is
difficult to be used with O2. We will return to this topic in Section 4.5.

“Problem Frames” includes some properties of the ontological concepts from
an abstract point of view (third component of the model). For example, those
concepts with an associated syntax (e.g. those in O2) have a set of abstract
properties that allow to combine instances of them, forming different graphical
models (diagrams). A sample property is that two instances of “Domain” cannot
be directly associated but they need an instance of “Interface”.

4 Predictions from the Theoretical Model

In this section we present seven predictions inferred from the theoretical model
previously introduced. We argument the validity of each obtained prediction,
thus contributing to the validation of the whole theoretical model (Section 3.2).

4.1 Ontologies may Promote Strategies

Research from Cognitive Psychology shows that individuals develop and use
strategies to solve problems, not necessarily in a conscious manner (Schaeken et
al., [19]; Van der Henst et al., [23]). We propose the following working definition:
a strategy is a particular reasoning approach towards the resolution of a problem
in a certain class of related problems. We are interested in those strategies that
can be applied not only to a particular problem instance in the class, but to all
of them or, at least, to a number of them.

In his famous problem-solving method from 1945, George Polya emphasizes
the importance of considering different aspects of the problem and combining
them to form novel perspectives, which may lead to a solution strategy: “Con-
sider your problem from various sides. Emphasize different parts, examine dif-
ferent details, examine the same details repeatedly but in different ways, combine
the details differently, approach them from different sides. Try to see some new
meaning in each detail, some new interpretation of the whole.[...]” (Polya, [16],
p. 34). Our theoretical model of methodological works agrees with this principle:
the concepts in the ontologies consider different aspects of the problems and they
allow to study these aspects together. Therefore, ontologies that capture aspects
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Table 4. The two main strategies in “Problem Frames”. Note that S2 is a sub-strategy
for realizing S1. Page numbers refer to (Jackson, [11])

Ontology Strategy

O1 S1: Analyse a software problem by reducing it to a combination of
known class of problems. Design a structure for a software problem by
composing known classes of problems (pp. 59–61).

O2 S2: Ground the analysis and structure of software problems in observ-
able, physical phenomena: this will help to check whether we are really
satisfying the requirements or not (pp. 22–23).

of the problem may inspire the emerging of new strategies to address the prob-
lem. The hypothesis that considering novel aspects and combining them can lead
to new ideas is consistent with the creativity theory by the psychologist Boden
([2, 3]), who defends the association of concepts as a valid process of emerging of
new ideas. Ward et al. ([24]) refer to this process as “conceptual combination”.

According to our initial definition, a strategy may contribute only to some
respect of the overall resolution of the problem. Therefore, a number of strategies
may be necessary to constitute a complete method for a class of problems; this is
one of the reasons why the theoretical model allows several ontologies (another
reason will be explained in Section 4.5). For example, sometimes a strategy is
needed to carry out a higher-level strategy. This happens in Jackson’s Problem
Frames (see the example below).

From the preceding discussion we can conclude that it is possible to design
ontologies that motivate the invention of strategies that contribute to the res-
olution of some problem. At the moment we do not have a theory that fully
characterizes the class of ontologies that promote strategies. However, in this
section we have proven that ontologies that explore different perspectives of
problems are good candidates for promoting useful strategies.

Example: Strategies in “Problem Frames”. Table 4 show the two main
strategies proposed by the “Problem Frames” approach. The observation that
there exist classes of typical software problems (aspect A1 in Table 1) has mo-
tivated strategy S1. This strategy is quite general, and it needs at least another
one to be realized; S2 proposes a possible way of achieving S1. It has been mo-
tivated by the observation that each class of software problems has a defined
spatial structure (aspect A2).

4.2 Guides Suggest How to Carry Out Strategies Promoted by
Ontologies

The former prediction has proven that ontologies included in the theoretical
model of Section 3.1 may inspire strategies. The theoretical model also includes
guides related to the use of the ontologies. In this section we will prove that these
guides are the methodologist’s suggestions for carrying out the corresponding
strategies promoted by the ontologies.
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Consider an ontology without associated guides. According to the problem-
solving approach and creativity theory exposed in the previous section, the prac-
tising engineer could still invent her own strategy while experimenting with an
ontology on a concrete problem, even in the absence of guides. However, in the
general case, it is not possible to prove the contribution of such an ontology to
the resolution of the class of problems, implying that the methodological work
could not be validated. As validation of the method is one requirement of our
model, the role of ontologies without guides is restricted to the study of some
aspect of the class of problems.

4.3 Ontologies in Methods are Reasoning Instruments

Ontologies are intended to be used by the practising engineer, together with
guides that help her to carry out the related strategies. To applying an strat-
egy means that the practising engineer must reason with the concepts in the
corresponding ontology. Guides help her in this reasoning to a certain extent,
specially those that we have called “logical schemes” in Section 3.1.

4.4 Strategies Promoted by Ontologies Apply Knowledge to the
Resolution of Problems

The ontologies of the theoretical model have two kinds of associated knowledge.
On the one hand, a portion of the study on the class of problems: the one
related to the problem aspects that the ontological concepts represent. On the
other hand, the abstract properties of the concepts. Therefore, any strategy
promoted by some ontology is based on and applies the knowledge associated to
its ontology.

4.5 A Method may Have Alternative Strategies

We have reasoned in Section 4.1 that our model allows that several strategies
coexist, each one contributing to solve some respect of the whole problem. How-
ever, the model does not impede that two strategies contribute to the resolution
of the same respect. Each one could apply a different portion of the method
knowledge, and each one could be driven by different sets of guides. If, in deal-
ing with a concrete problem, strategy A has failed in solving a subproblem or it is
not applicable to the concrete case, the practising engineer could try strategy B
for solving the same subproblem. Below we present an example of an alternative
strategy to S2.

Example: Introduction of A New Strategy in “Problem Frames”. The
different roles introduced by Jackson (aspect A4, ontology O4) denote different
responsibilities of the domains with respect to the composite system. The ful-
fillment of the responsibilities causes the appearance of an emergent behavior
(Wieringa, [25]), which may or may not be what the customer expects. The
study of responsibilities in composite systems has a long tradition in Software
Engineering (Feather, [5]). A related concept is that of Goal, which has been
proven to be a useful resource for this kind of analysis, particularly in the KAOS



214 J.M. Cañete and F.J. Galán

Agent an active system component (or “processor”) which may have choice of behaviour
to ensure the goals it is assigned to (Feather, [5]).

And/Or Goal Reduction a mechanism for goal refinement: g is a reduction of G iff
achieving goal g possibly with other subgoals is among the alternative ways of achiev-
ing goal G (Dardenne et al, [4]).

Goal an objective to be achieved by the system under consideration (Letier and van Lam-
sweerde, [13]). “System” refers to the composite system consisting of the software-
to-be together with its environment (Fickas and Helm, [6]).

Goal Pattern classification based on the temporal behaviour required by the goal. It can
be achieve, cease, maintain, and avoid (Dardenne et al, [4]).

Responsibility Assignment assigning responsibility to an agent means that this agent
must restrict its behaviour so as to ensure the goal (Dardenne et al, [4]).

Fig. 1. Some concepts of the KAOS ontology (OG)

approach (Dardenne, Fickas, and Lamsweerde, [4]). This has encouraged us to
borrow the KAOS ontology from (Letier and Lamsweerde, [13]), and to use it to
study the class of problems addressed in (Jackson, [11]). Figure 1 defines some
of the concepts in the cited ontology, which we will denote as OG.

This study revealed that each problem frame has a defined structure in terms
of goals. For example, Figure 2 shows the goal structure of the “Information
Display Frame”. The figure describes two alternative ways of achieving the goal
Maintain[ReportingWorldInformation], which is the higher-level goal of the frame.
The left goal tree requires the collaboration of three agents: Machine, Real world,
and Display. The right goal tree does not require the Display, because the data
about the real world are represented as pure information (in a lexical domain).

The fact that each problem frame has a corresponding goal structure, mo-
tivated us for defining the following strategy, which contributes to achieve the
general strategy S1:

SG: in problem analysis, identify problem frames by looking for the goals
and responsibilities in the problem; in problem structure, design subprob-
lems by thinking about goals that must be satisfied by lower-level goals,
which will be ultimately realized by agents. For both purposes, use the
knowledge of the goal structure of problem frames.

In order to realize this strategy, we have proposed a number of guides related
with O1 and OG. Table 5 shows some of these guides. Figure 3 in Appendix
A shows an example of reasoning with OG in analysing and structuring the
“package router control problem” (p. 270 of Jackson, [11]). Note also that OG

allows a more easy application of guide G4 (Section 3.3.), as it makes explicit
the responsibilities assigned to each Domain (Agent).
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Fig. 2. Goal structure for the “Information Display Frame”. The figure includes the
legend for the some concepts in OG

4.6 Methods Can be Regarded as Scientific Theories

If we recall the description of the theoretical model (Section 3.1), it contains
a study of the problems in a class. Such class is a reality, so the study can be
considered as a theory that claims that the obtained results fit such reality.

Other elements in the model are ontologies and guides. They may exist pre-
viously in another context, or they may be invented by the methodologist when
she developed the method. In any case, they constitute conceptual realities. The
model contains a study of the properties of these elements; as before, this study
can be regarded as a theory about a reality. It is necessary for proving the
correctness of the methodological work (Section 3.1).

In conclusion, the model can be interpreted as consisting of two theories:
one referred to the class of problems, and the other one referred to conceptual
elements (ontologies and guides).
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Table 5. Some proposed guides for reasoning with O1 + OG to realize SG

Guides Ontologies

G6 (logical scheme): we have realized that some goal g, which appears
as assigned to the software system in the initial statement of some
problem p, corresponds to the higher-level goal in the goal structure
of a certain problem frame F . Therefore, it is unlikely that the soft-
ware system alone could operationalise g on its own. Therefore, let us
assume that our problem p fits frame F . Applying the goal structure
of F to p, we discover the remaining agents and their responsibilities
in terms of sub-goals. We verify our initial assumption by checking
that the assigned goals make sense in the context of p.

O1 + OG

G7 (logical scheme): We are in doubt about if a certain problem frame
F fits our problem p. Let us assume it fits. Applying the goal structure
of F , we obtain the relation of agents that should participate and their
responsibilities in terms of operationalisation of goals. If we find that
(1) either some goal demands more than its agent in p is able to do,
or (2) several goals demand too little from their associated agents
in p, wasting their capabilities, then we can conclude that the initial
assumption is probably false.

O1 + OG

4.7 The Study of Problems is Central to the Design of a Method

According to the model prediction of Section 4.1, the study of the class of prob-
lems under different concepts may motivate the invention of resolution strategies,
and therefore it is central to the design of methods. The study is also necessary
to prove that the methodological work is valid; this is described in the constraint
stated in the theoretical model (Section 3.1). This reason has been also pointed
out by Wieringa ([26]).

5 Conclusions and Current Work

This paper has presented a contribution to the relation between ontologies that
constitute modelling languages and an individual’s reasoning process during
problem solving in Software Engineering. Our research method has been to
make predictions from a theoretical model of methodological works. This ap-
proach has led to a number of interesting conclusions (Section 4), including
the property that ontologies may inspire solving strategies, and hence they are
essential instruments for reasoning during problem solving. In particular, this
property establishes that it is possible to design modelling languages that help
the engineer to reason in the problem solving process of software development.
However, we do not have a complete theory that characterizes the whole class
of ontologies that motivate reasoning strategies. Our current work is to advance
in this research area.
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A An Example of Reasoning with Ontologies

We show a simple example of reasoning with ontologies O1 and OG. The aim
is to analyse and structure the “package router control problem”, which also
solved in pp. 270–291 of (Jackson, [11]) with strategies S1 and S2. The following
problem statement has been extracted from page 270 of the same reference:

A package router is a large mechanical device used by postal and delivery organi-
sations to sort packages into bins according to their destinations. The packages carry
bar-coded labels. They move along a conveyor to a reading station where their package-
ids and destinations are read. They then slide by gravity down pipes fitted with sensors
at top and bottom. The pipes are connected by two-position switches that the computer
can flip (where no package is present between the incoming and outgoing pipes). At the
leaves of the tree of pipes are destination bins, corresponding to the bar-coded destina-
tions. A package cannot overtake another either in a pipe or a switch. Also, the pipes
are bent near the sensors so that the sensors are guaranteed to detect each package sep-
arately. However, packages slide at unpredictable speeds, and may get too close together
to allow a switch to be set correctly. A misrouted package may be routed to any bin, an
appropriate message being displayed. There are control buttons by which an operator
can command the controlling computer to stop and start the conveyor.

The problem is to build the controlling computer to obey the operator’s commands,

to route packages to their destination bins by setting the switches appropriately, and to

report misrouted packages.

Thinking in terms of OG, we can identify three goals from the problem state-
ment, which appear as assigned to the software system (box 1 in Figure 3).
Reasoning with the knowledge from guide G6, we conclude that the goal Report
misrouted packages may be the high-level goal of an Information Display Frame.
Hence, it is unlikely that the Machine could operationalise this goal only by
itself. Box 2 in Figure 3 shows the identified frame, which is an instance of the
Information Display Frame concept in O1. Next, according to the suggestion of
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G2, we realize that the Reliability Concern is important for this problem: the
assumptions about the packages may likely fail, and this would bring undesir-
able consequences for the composite system (we cannot trust in agent Router &
packages to satisfy its goal). Following guide G5, we introduce a new Information
Display frame that audits these possible failures (box 3 in Figure 3).

Fig. 3. A simple example of reasoning with O1 and OG
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Abstract. Model-checking is becoming an accepted technique for debugging
hardware and software systems. Debugging is based on the “Check / Analyze / Fix”
loop: check the system against a desired property, producing a counterexample
when the property fails to hold; analyze the generated counterexample to locate
the source of the error; fix the flawed artifact – the property or the model. The
success of model-checking non-trivial systems critically depends on making this
Check / Analyze / Fix loop as tight as possible. In this paper, we concentrate on
the Analyze part of the debugging loop. To this end, we present a framework for
generating, structuring and exploring counterexamples either interactively or with
the help of user-specified strategies.

1 Introduction

Model-checking is an automated verification technique that receives a finite-state de-
scription of a system and a temporal logic property and decides whether the property
holds in the system. Model-checking is rapidly becoming an accepted technique for ana-
lyzing software and hardware system. In addition to telling the user whether the desired
temporal property holds, it can also generate a counterexample, explaining the reason
why this property failed. Typically, counterexamples are given in terms of states and
transitions of the model and can be effectively used for debugging. The counterexam-
ple generation ability has been one of the major advantages of model-checking when
compared to other verification methods.

During debugging, a model-checker is used as a part of the Check / Analyze / Fix
loop: check the model, analyze the produced counterexample, fix the model or the
property. Copty et al. [7] describe several stages of debugging: (1) the specification
debugging stage, during which we fix the properties to make them trustworthy; (2) the
model debugging stage, during which the actual bugs in the model are being found; and
(3) the quality assurance stage which addresses the problem of “regression verification”
– making sure that fixing one error does not introduce new ones.

Counterexamples can also be used for design exploration [2]. A model-checker en-
ables the user to specify scenarios of interest without specifying the exact input sequences
leading to them, and can also reason about multiple executions of the system in parallel.
Thus, the user can provide a set of constraints in the form of a temporal logic property
that an “interesting” trace through the system should satisfy, and the model-checker
computes such traces while checking the property.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 220–236, 2005.
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Explaining why a property p fails to hold (a counterexample) is the same as ex-
plaining why a property ¬p holds (a witness). In this paper, we often use witnesses and
counterexamples interchangeably, referring to them collectively as evidence.

Some version of the Check/Analyze/Fix loop frequently applies, and the goal of this
work is to make this loop tighter. The Check phase involves running a model-checker,
which is an exponential algorithm that often takes hours to run even for moderately-sized
models [7]. So, it is desirable to minimize the number of model-checking runs while
maximizing the information obtained from each run.

The Analyze phase is measured in terms of the time that an engineer spends exploring
the generated evidence, and thus is costly as well. It is possible for model-checkers to
generate too much evidence [9], flooding the user with information, and making it hard
to build a mental picture of what is going on. In this case, the user may spend too
much time and energy trying to reach the portion of interest or get confused about
the purpose of a given sub-trace in the overall explanation. Also, since the size of the
property under analysis is typically much smaller than the size of the system, formula-
specific patterns often repeat themselves throughout the evidence [9], and users fail to
notice them. It is therefore desirable to have control over just how much evidence is
generated by the model-checker. This can be accomplished via interactive explanations
– evidence generation based on user preferences. Interactive explanations can allow users
to put a bound on the time that the model-checker spends computing the evidence, and
continue exploring it manually; control which option is used to facilitate the generation
of “interesting” evidence; and control the amount of information that is generated and
presented by restricting the scope of exploration according to some criterion of interest.
Clearly, interactive explanations makes the problem of generating and understanding
evidence tractable:

– The amount of evidence generated is based on what the user is willing to understand.
This helps scalability of our approach to large models.

– The amount of evidence displayed makes it easier to identify “interesting” cases and
helps with debugging.

Since model-checking runs are expensive, it is desirable to enable users to fix as many
errors as possible before repeating the verification, rather than eliminating one counterex-
ample at a time. For example, we would like to know that f ∧ g fails to hold because
both f and g are false. To this end, providing the user with all disjoint counterexamples
to a given property can significantly shorten the debugging time.

Contributions of this Paper. In this paper, we propose a framework for structuring
and interactively exploring evidence. The framework is based on the idea that the most
general type of evidence to why a property holds or fails to hold is a proof. Such proofs
can be presented to the user in the form of proof-like counterexamples [12] without sac-
rificing any of the intuitiveness and close relation to the model that users have learned to
expect from model-checkers. Basing the evidence on proofs allows us to unify a number
of existing ad-hoc approaches to exploring counterexamples. In particular, notions of
forward and backward exploration as well as starting and stopping conditions are natural
in the proof setting. Proofs can also be used to control what kind of evidence is being
generated. The primary sources of such choices are:
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1. determining which part of the property to explain (e.g., if the property is p ∨ q,
should the presented evidence be for p or for q?) and

2. determining which part of the model to use for the explanation (e.g., if the property
is “there exists a next state where p holds” and the model has several such states,
which should be presented?).

The above choices can be made by the user interactively or automated in the form
of strategies (e.g., if faced with a choice of states for the explanation, always choose the
one where some predicate x holds). The application of strategies is implemented in our
framework by changing the proof rules used to generate evidence. The modification of
proof rules can be permanent for the duration of the entire run of the model-checker,
and thus can be facilitated by history-free strategies. Alternatively, the application of
strategies can depend on the previously-observed behaviour of the system. For example,
to see the infinite alternation between x and y, we may want to specify a strategy that
oscillates between preferring a state where x holds and a state where y holds.

Finally, from the software engineering point of view, our framework provides a
simple, unified way to interact with the counterexample generator. The interaction is
based on defining strategies that combine property-based and model-based choices. For
example, we can specify a strategy that prefers the part of the model that the user has
explored previously, while attempting to satisfy a part of the property for which the
witness is the shortest.

Clearly, most users cannot understand large proofs. In our framework, proofs are
used in the back-end. They help generate and navigate through the evidence, without
the need to be presented to the user. Instead, users see witnesses and counterexamples.
Furthermore, large proofs are never computed in our approach since proof fragments are
generated from the model-checking runs as part of interactive explorations to facilitate
user-understanding. Application of strategies for dynamic proof generation is the major
technical contribution of this paper, when compared to our previous work reported
in [12].

In this paper, we illustrate the framework using a simple example rather than validat-
ing its effectiveness via a sizable case study. Here, we draw on industrial experience [7]
that being able to limit the amount of evidence shown and generating several counterex-
amples at once is extremely effective in reducing the effort that engineers spend looking
for a real cause of an error. Our framework unifies a number of existing approaches
and allows users to create additional strategies that may further improve the debugging
process. Thus, it can be used for explaining the reason why the property failed or suc-
ceeded, determining whether the property was correct (“specification debugging”), and
for general model exploration.

Related Work. The problem of generating and analyzing counterexamples for model-
checking can be divided into three categories: generating the counterexample efficiently,
obtaining a visual presentation suitable for interactive exploration, and automatically
analyzing the counterexample to extract the exact source of the error.

The original counterexample generation algorithm, implemented in most symbolic
model-checkers, was proposed by Clarke et al. [5], and was later extended to handle
arbitrary universal properties [6, 12], i.e., properties that quantify over all paths of the
model. An alternative approach was independently suggested by Namjoshi [13] and Tan
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and Cleaveland [16] with the goal to extend the counterexample generation technique to
all (as opposed to just universal) branching temporal properties. The proposed methods
identify what information must be stored from the intermediate run of the model-checker
to reconstruct the proof of correctness of the result. A similar technique for linear prop-
erties was explored by Peled et al. [14].

The problem of the visual presentation of generated counterexamples was addressed
by Dong et al. [9, 8]. The authors developed a tool that simplifies the counterexample
exploration by presenting evidence through various graphical views. In particular, they
found that one of the most important parts of the visualization process is highlighting
the correspondence between the analyzed property and the generated counterexample.

The problem of the automatic analysis of counterexamples was addressed by many
researchers but space limitations do not allow us to survey them here. Many of these
techniques (e.g. [11, 1]) are based on comparing all counterexamples to a safety property
(i.e., a temporal property where a counterexample has a finite number of steps) to identify
the common cause of the error.

The goal of our work is to develop a unifying framework for combining various
visualization and analysis techniques. In that, the work of Copty et al. [7] is the closest
to ours. The authors report on a “counterexample wizard” – a tool for counterexam-
ple exploration for safety properties. The key idea of the approach is to compute and
compactly store all counterexamples to a given property. Users can then visualize the
result in various ways, replay several counterexamples in parallel, and apply different
automatic analysis techniques.

Organization. The rest of this paper is organized as follows: We discuss CTL model-
checking in Section 2 and the framework from the user perspective in Section 3. In
Section 4, we discuss the internals of the framework. In Section 5, we enrich the frame-
work with additional proof strategies that allow the user to control which counterexample
gets generated. In Section 6, we discuss how to use our framework to generate several
counterexamples at once. We conclude in Section 7 with the summary of the paper and
discussion of future research directions.

2 CTL Model-Checking

Model-checking is an automated verification technique that receives a system K and a
temporal logic property ϕ and decides whether ϕ holds in K. In this paper, we assume
that K is a Kripke structure consisting of a finite set of states S, a designated initial state
s0, a set of atomic propositions A, a total transition relation R ⊆ S × S, and a labeling
function I : S → 2A that assigns a truth value to each atomic proposition in each state.
An example Kripke structure is shown in Figure 1(a).

We specify properties in Computation Tree Logic (CTL) [4], defined below:

ϕ= a | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ |EXϕ |AXϕ |EFϕ |AFϕ |EGϕ |AGϕ | E[ϕ U ϕ] | A[ϕ U ϕ]

where a is an atomic proposition. The meaning of the temporal operators is: given a state
and paths emanating from it, ϕ holds in one (EX) or all (AX) next states; ϕ holds in
some future state along one (EF ) or all (AF ) paths, ϕ holds globally along one (EG) or
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Fig. 1. (a) State machine for the module Button; (b) Two witnesses of length 3 for [[EFr]](s0)
for this statemachine

AXϕ � ¬EX¬ϕ AFϕ � A[true U ϕ] E[ϕU0ψ] � ψ

EFϕ � E[true U ϕ] AGϕ � ¬EF¬ϕ E[ϕUiψ] � ψ ∨ (ϕ ∧ EXE[ϕUi−1 ψ])
A[ϕ U ψ] � ¬E[¬ψ U ¬ϕ ∧ ¬ψ] ∧ ¬EG¬ψ

Fig. 2. Definitions of CTL operators

all (AG) paths, and ϕ holds until a point where ψ holds along one (EU ) or all (AU ) paths.
Some properties of the model in Figure 1(a) are: “it is possible to generate a request”
(EF r) and “once a button is pressed, a request will be generated” (AG(p ⇒ AF r)).

We write [[ϕ]]K(s) to indicate the value of ϕ in the state s of K, and [[ϕ]](s) when K
is clear from the context. A formula ϕ is satisfied in a Kripke structure K if and only if
it is satisfied in its initial state. The operators EX , EG, and EU form an adequate set,
i.e. all other operators can be defined from them, as shown in Figure 2. Semantics EX ,
EG and EU is formally in defined as follows:

[[EXϕ]](s) iff ∃t ∈ S · R(s, t) ∧ [[ϕ]](t)
[[E[ϕUψ]]](s) iff there exists a path s0, . . . , snsuch thats=s0 and [[ψ]](sn)and ∀i < n · [[ϕ]](si)
[[EGϕ]](s) iff there exists an infinite path s0, s1, . . .such that s0 = s and ∀i ∈ nat · [[ϕ]](si)

We also introduce a bounded version of the EU operator, that restricts path quantification
to paths of bounded length, as shown in Figure 2.

3 User View of The Framework

In this section, we illustrate the framework from the user perspective on a familiar
example of an elevator controller system.

3.1 Elevator Controller System

An elevator controller system consists of a single elevator which accepts requests made
by users pressing buttons at the floor landings or inside the elevator. The elevator moves
up and down between floors and opens and closes its doors in response to these requests.

We use the model specified in SMV by Plath & Ryan [15]. We do not present the
state-machine model here because the purpose of our use of counterexamples is model
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s
(a)

s s′
(b)

s s′
(c)

Fig. 3. Possible witnesses for EGp in state s: (a) a looping witness, (b) a path followed by a loop,
and (c) two witnesses combining cases (a) and (b)

debugging and model understanding. However, to illustrate a few concepts, we do provide
a state machine for a module Button, shown in Figure 1(a). One instance of the Button
module is produced for each button inside the elevator and on floor landings.

Variable f determines when the request has been fulfilled and the button can be reset.
We model the latching explicitly: variable p determines the state of the button (pressed
or released), whereas r determines whether the request to move to the desired floor has
been generated. We further assume that a request cannot be fulfilled before it has been
generated, i.e., f cannot become true if r is false. In Figure 1(a), we only show true
variables; thus, in state s0, p, r, and f are false.

3.2 Witnesses and Counterexamples

Suppose we are interested in checking the following property of the Button module:
“it is never the case that a request can be fulfilled”, expressed in CTL as AG¬f . The
counterexample to this property is a finite path that starts in the initial state (s0) and
arrives at the state where f is true, e.g., s0, s1, s2, s5. Note that this path is also a witness
to the negation of the above property: EFf , i.e., “it is possible to fulfill a request”.

Consider another property: “whenever a request is generated, it will eventually be
fulfilled”, formalized in CTL as AG(r ⇒ AFf). The counterexample to this property,
or a witness to the equivalent property EF (r ∧ EG¬f), is an infinite behavior that
describes (1) how the system can reach a state where r holds and from then on (2) how
it can avoid entering a state in which f holds. One such path is s0, s1, s2 (reaching r),
followed by a loop at s2 (so f is always false).

Unlike traditional model checkers, our framework does not automatically generate
a single counterexample. Instead, it automates the process of dynamically constructing
one, or several, starting from the initial state. Further, it gives two separate views of the
counterexample: the low-level view, which describes each state explicitly, naming its
variables, and a high-level view that shows the complete trace and annotates each state
with additional information, which we refer to as summaries, describing the significance
of the state with respect to the overall property, and summarizing the rest of the trace.

3.3 Exploring the Elevator Controller Model

We now describe user interactions with the framework while debugging and exploring
the Elevator model.

Generating Several Counterexamples at Once. When we start verifying the system
using the model-checker, it is usually the case that the property we are trying to check
is wrong. Consider the property: “from any state, all paths go through a state where the
elevator is on the third floor and doors are open” (AGAF (floor = 3 ∧ doors = open)).
The first counterexample tells us that it is possible to start on the first floor and stay there
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forever. We may conclude that the first floor is “special”, and instead check that our
desired configuration is reachable from any floor except the first one: AG(floor 	= 1 ⇒
AF (floor = 3 ∧ doors = open)). The counterexample we get in this case would lead
us to the second floor and remain there forever, or possibly oscillate between the first
and the second floor, without ever reaching the third. Seeing all three counterexamples
at once would have helped us determine that the elevator never gets to the third floor
unless a request for this floor has been made, and the property should have been updated
to AG(btn3.r ⇒ AF (floor = 3 ∧ door = open)).

Excluding a Known Counterexample via Strategies. Consider the above example.
Instead of modifying the property to exclude our first counterexample, which is of-
ten difficult for engineers, we specify a strategy that attempts to avoid the state where
floor = 1, if possible. A success of this strategy allows us to discover further counterex-
amples without modifying the property.

Preferring/Avoiding the Explored Part of the Model. Our model of the elevator con-
troller comes with a number of desired properties, e.g., “the elevator never moves with its
doors open”, “every request for the elevator is eventually fulfilled”, etc. When analyzing
a few of these, we quickly get familiar with part of the model, e.g., we discover that the
elevator can stay in a state where floor=1, doors are closed, the state of the controller is
notMoving, and the direction of the elevator is up. We call this state Idle.

Strategies allow engineers to use their knowledge of “designated” states, such as Idle,
to guide the counterexample generator towards them in the case where an AF property
is false. In particular, using the information about the state of the doors, the direction
of the movement, and the state of the controller, we define a distance function between
the Idle state and the current state of the model and specify a strategy that picks a state
where this distance is minimized.

Note that an additional benefit of using this strategy during debugging is that we
can stay within a better-understood part of the model. On the other hand, if the goal of
model-checking is model exploration [2], we may instead choose to avoid the known
behavior by maximizing the distance between the next state in the proof and Idle.

Choosing the “Best” Loop Using Summaries. Generating the shortest counterexample
for an arbitrary temporal property is NP-hard [5], and thus conventional model-checkers
apply a greedy strategy by computing the shortest counterexample to each subformula.
In the case of counterexamples to AFp (or witnesses to EG¬p), even this strategy is
hard to implement. Instead, model-checkers consider a state s to satisfy EGp if either
there is a path on which p holds in each state that loops around s (see Figure 3(a)) or
there is a successor of s in which p holds and there is a looping path of p-states around
it (see Figure 3(b)). Thus, the algorithm to compute a witness to EGp in state s checks
whether there is a path that leads back to s and on which p holds in each state, terminates
if such a path is found, and otherwise picks a successor of s where EGp holds as the new
state and continues. Such an algorithm picks the first loop on a path, even if it is long
and hard to explore. We illustrate this scenario in Figure 3(c): the dashed loop around s′

may be short and simple, whereas conventional model-checkers always return the solid
loop around s, if one exists, as the witness to EGp.

Our framework allows the user to define strategies to loop around a familiar state
(e.g., Idle) or use state summaries to choose the most interesting loop. Consider the
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witness to a property EGp in the state s1 of the model in Figure 1(a). Clearly, there are
several paths that satisfy it: s1, followed by a loop around s2; a loop s1, s2, s4, s1; a
loop s1, s2, s4, s6, s1, etc. The framework displays the state s1 and indicates that EGp
holds in it; this is the current “explanation” of the state s1. Clicking on EGp produces
further explanations of why EGp holds in s1: (1) s1 is part of a three-state loop and
p holds in each state of the loop; (2) there is a successor state of s1 from which we
can explain EGp. Clicking on the second explanation tells us that the successor state
of interest is s2, and EGp holds in it. Clicking on this EGp tells us the reason: (2a):
there is a self-loop (a loop of length 0) around s2 and p holds in s2; (2b): there is a
successor state of s2 in which EGp holds. At this point, we can either go back to the
first explanation and in a few clicks reveal the three states of the loop, or decide that the
self-loop around s2 provides the better explanation. Of course, we can continue looking
for other explanations until all possible p-loops have been discovered.

Alternatively, after the first explanation that tells us that s1 is part of a three-state loop,
we may choose to define a strategy that examines the model from state s1 up to depth
three to see whether there are other witnesses to EGp and how long the corresponding
loops are, and then chooses the shortest such loop to explore.

4 Framework

The framework for generating and visualizing counterexamples is shown in Figure 4.
Dashed lines indicate optional inputs. The user interaction with the framework starts
by providing a proof keeper with a model K and a property ϕ. The proof keeper is the
central part of the framework, responsible for generating (a fragment of) the proof and
presenting it to the user. First, it calls a model-checker to find out whether ϕ is satisfied
or violated by the model. It then uses the database of proof rules, according to a user-
specified proof strategy, to prove that fact. In this step, it uses the model-checker to decide
which proof rules are applicable and to ensure the soundness of the proof. (Additional
runs of the model-checker can be avoided by efficiently computing and storing evidence,
as discussed in [16, 13, 12].) The current proof fragment produced by the proof keeper
is shown to the user via a visualization engine. The interaction of the user with this
part of the framework is captured by user-supplied visualization strategies. In the rest of
this section we discuss the framework in more detail. The framework augmented with
additional proof strategies is described in Section 5.

4.1 Proof Rules

Several proof rules from the CTL proof system are given in Figure 5. These include all
proof rules of the propositional logic that deal with disjunction and conjunction, such
as the ∧-, ∨-rules, i.e., to prove a ∧ b, we need to prove a and b separately, and to
prove a ∨ b, we need to prove either a or b. Additionally, our proof system uses the
axiomatization of the given Kripke structure K, describing its transition relation R and
values of each atomic proposition in each state. For example, some of the axioms of the
model in Figure 1(a) are: there is a transition between s0 and s1 (R(s0, s1)); there is no
transition between s0 and s3 (¬R(s0, s3)); p is true in s1 (I(s1, p)), etc.
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Fig. 4. Overview of the framework

a b
∧-rule

a ∧ b

∃t ∈ S · R(s, t) ∧ [[ϕ]](t)
EX

[[EXϕ]](s)

[[ψ]](s)
EU0

[[E[ϕ U0 ψ]]](s)

a
∨-rule

a ∨ b

∃n · [[E[ϕ Un ψ]]](s)
EU

[[E[ϕ U ψ]]](s)

f(d)
one-point rule

∃x ∈ D · f(x)

b
∨-rule

a ∨ b

[[ψ ∨ (ϕ ∧ EXE[ϕ Un−1 ψ])]](s)
EUi

[[E[ϕ Un ψ]]](s)

Fig. 5. Some CTL proof rules

The proof system is then extended with proof rules for each temporal operator. In
this paper, we only show proof rules for EX and EU , and refer the reader to [12] for a
complete description of the proof system for CTL and for results on its soundness and
completeness. The proof rule for the EX operator follows directly from its definition,
i.e., to prove EXϕ at a state s, we need to find a state t which is a successor of s and
in which ϕ holds. Note that this proof rule introduces an existential quantifier, which is
later eliminated by the application of the one-point rule. The completeness of the proof
rule for the EU operator follows from the fact that our models are finite. Thus, any path
witnessing an EU formula has a bounded length. Finally, the proof rules for the bounded
EU operator simply unroll it according to the bound, using the definitions of EU0 and
EUi given in Section 2.

4.2 Generating Proofs

For a given property ϕ, a proof of its validity is constructed by applying the basic proof
strategy: (1) the database of the proof rules is consulted to find all applicable proof rules
based on the syntax of the property; (2) a model-checker chooses those for which the
valid proof can be constructed; (3) the rule to be applied is randomly chosen from the
resulting set. In [12], we give more detail on the use of the model-checker to guide an
automatic proof construction and show that the above strategy is terminating for CTL.
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R(s0, s1)

R(s1, s2)

[[r]](s2) ∨-rule
[[f ∨ r]](s2)

EX
[[EX(f ∨ r)]](s1)

EX
[[EXEX(f ∨ r)]](s0)

EUi

[[E[� U2 (f ∨ r)]]](s0)
one-point rule

∃n · [[E[� Un (f ∨ r)]]](s0)
EU

[[E[� U (f ∨ r)]]](s0)
EF

[[EF (f ∨ r)]](s0)

[[r]](s2)

[[f ∨ r]](s2)

∃t · R(s1, t) ∧ [[f ∨ r]](t)

[[EX(f ∨ r)]](s1)

[[EXEX(f ∨ r)]](s0)

[[E[� U2 f ∨ r]]](s0)

[[EF (f ∨ r)]](s0)s0
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proof

proof

proof

(a) (b)

Fig. 6. (a) Proof of [[EF (f ∨ r)]](s0); (b) Proof-like witness of [[EF (f ∨ r)]](s0)

For example, the construction of the proof of the validity of [[EF (f ∨ r)]](s0) of the
Button module, shown in Figure 6(a) (where some proof steps are skipped for clarity),
proceeds as follows. First, the EF operator is expanded according to its definition into
the EU operator, and the proof rule for EU is applied. This results in the subgoal
∃n · [[E[� Un (f ∨ r)]]](s0). The model-checker is then used to find the smallest bound
on n, which is just the number of iterations required for a model-checking algorithm to
converge, and in our example it is 2. Applying the EUi rule twice, we reduce the proof
to [[EXEX(f ∨ r)]](s0).

After one application of the EX rule, we want to prove that EX(f ∨ r) holds in
state s1, which reduces to ∃t ∈ S · R(s, t) ∧ [[EX(f ∨ r)]](s1). The model-checker is
then used to find a successor s2 of s1 in which f ∨ r holds, allowing us to eliminate the
existential quantifier (this step is skipped in Figure 6(a)). Finally, to prove [[f ∨ r]](s2),
the model-checker is called once again to determine which of the two ∨-rules to apply.

4.3 Visualization Engine

The visualization engine converts the proof into a witness or a counterexample, and
presents it to the user in a proof-like style of [12]. The proof-like presentation combines
the advantages of both proofs and traditional counterexamples by highlighting the be-
havior of the model that is used to justify the result of the model-checker. This is achieved
by extracting the set of model execution traces from the proof, and labeling each state of
the trace with the part of the proof that depends on it. For example, a proof-like witness
for the property [[EF (f ∨ r)]](s0) is shown in Figure 6(b). This property is witnessed
by a 3-state path s0, s1 and s2. The proof in state s0 tells us that a state in which f ∨ r
holds is reachable in exactly two steps, since the EF operator is explained by an EU
with the bound 2. In the last step of the proof in state s0, the dotted arrow connecting the
formula EXEX(f ∨ r) and the state s1, tells us that s1 is the witness for the outermost
EX operator. The proof attached to state s2 tells us that the formula f ∨ r holds in it
because r is true.

The parts of the proof attached to each state can be seen as summaries that explain
what is going to follow. For example, the proof attached to the state s0 in Figure 6(b) can
be summarized as “the next state is an intermediate one, and then we reach the desired
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state”. Other types of summaries indicate whether a given state is part of a loop, which
part of the property is being explained, etc.

The visual presentation of the result is controlled by the user through visualization
strategies. A typical strategy is to restrict the scope of the explanation in order to bring
forward its most useful parts. This is accomplished by specifying a starting and a stopping
condition for the visualization. For example, to restrict the witness of the property ϕ =
EGEF (x ∧ EXx) to the EF operator, we set the starting and the stopping conditions
to EF (x ∧ EXx) and x ∧ EXx, respectively. In the proof-like witness in Figure 6(b),
specifying that f ∨ r is the stopping condition removes the proof attached to the state
s2. If we let f ∨ r be the starting condition instead, s2 would be the only displayed part
of the witness.

A visualization strategy can also control how the state information is presented. For
example, we can request to show all variables in each state, refer to each state by a
unique name (as in Figure 6(b)), show only those variables that change between states,
or always display some specific variables. Furthermore, the strategy can control the
verbosity of the proof annotations, or completely replace the actual proof with a more
suitable explanation. For example, we can replace the proof attached to the state s0 with
its (English) summary.

The result can be examined in a traditional forward fashion – starting from the
initial state and proceeding in the direction of the trace execution to an error condition.
Alternatively, the user can start the exploration at the error condition and use the proof
annotations to move backwards along the trace. This corresponds to constructing the
proof of the property from the basic axioms of the system.

The visualization engine that we presented in this section enables users familiar with
model-checking to define strategies for counterexample generation and exploration. It
also allows users who are comfortable with simple proofs to search through the coun-
terexample effectively using the proof view. Yet, it is very simplistic – it is virtually
a back-end visualizer. To be useful, our visualization engine must be extended with
additional visual cues, e.g., as suggested in [9, 8] (see Section 7).

5 Adding User-Specified Strategies

The ability of a user to understand why desired properties hold or fail in the model can
be greatly enhanced if the user can control the kind of evidence that gets generated as
part of the explanation. This approach also makes proof generation much more scalable:
only the fragment of the proof that the user wants to see gets generated and displayed.

Consider the example in Figure 6. The presented witness goes through the state s2 of
the Kripke structure in Figure 1(a), whereas the user may have preferred it to go through
s3 instead. This is a model-based decision that comes from the fact that several states
may satisfy [[EXϕ]](s1), for some property ϕ. The user can choose which of these (or
whether all of these) are used in the proof.

The second decision type comes from explicit choices in properties, via a disjunction
operator, e.g., [[EFp∨EGr]](s3). If both disjuncts are true, as in the model in Figure 1(a),
the proof of which disjunct should be shown? Controlling this is especially useful during
the specification debugging phase of the verification.
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(d)

1: class PickDisjunct extends Strategy
2: Rule pickRule (Set rules, Node l)
3: pick Q in rules s.t.
4: size(tryApply(Q,l)) is minimal

(c)

1: class BasicStrategy extends Strategy
2: Node pickLeaf (Set leaves)
3: return randomElmnt(leaves)
4: Rule pickRule (Set rules, Node l)
5: return randomElmnt(rules)

(b)

1: class Strategy
2: void init ()
3: Node pickLeaf (Set leaves)
4: Rule pickRule (Set rules, Node l)
5: void ruleApplied (Rule r,Node n,Node r)

(a)

1: void buildProof (Strategy st)
2: st.init ()
3: repeat until leaves �= ∅
4: l = st.pickLeaf (leaves)
5: r = st.pickRule (getRules (l), l)
6: result = apply (r, l)
7: st.ruleApplied (r, l, result)
8: end repeat

(e)

1: class PickExplored extends Strategy
2: void init ()
3: N = s0

4: addRule(
[[EXϕ ∧ N ]](s)

Q
[[EXϕ]](s)

)

5: Rule pickRule (Set rules, Node l)
6: if Q ∈ rules then
7: return Q
8: end if
9: void ruleApplied(Rule r, Node n, Node r)
10: s =getState(r)
11: N = N ∪ {s}
12: update rule Q

(f)

1: class Sequence extends Strategy
2: void init ()

3: addRule(
[[EXϕ ∧ c1]](s)

Q1
[[EXϕ]](s)

)

4: addRule(
[[EXϕ ∧ c2]](s)

Q2
[[EXϕ]](s)

)

5: c1 state = true
6: Rule pickRule (Set rules, Node l)
7: if c1 state = true then
8: if Q1 ∈ rules then
9: c1 state = false
10: return Q1

11: end if
12: else
13: if Q2 ∈ rules then
14: c1 state = true
15: return Q2

16: end if
17: end if

Fig. 7. Proof strategies

Typically, a proof proceeds by decomposing the top-level goal into simpler subgoals.
For example, to prove [[p∧r]](s2), we need to prove [[p]](s2) and [[r]](s2) separately. Yet,
if the aim of generating the proof is debugging, we can often find the source of the error
without expanding all of the subgoals. The choice of the order in which subgoals are to
be expanded is the third type of decision that the user may want to make when generating
proofs. We give the pseudocode of the proof generation in the method buildProof(),
shown in Figure 7(a). The basic proof strategy, described in Section 4 and shown in
Figure 7(c), makes all choices at random. Users can affect the proof generation by
creating other strategies.

The simplest form of a strategy is to stop and ask the user to choose every time a
decision needs to be made. Users can be aided in making decisions by proof summaries

[[p]](s)
Q1

[[p ∨ EF q]](s)

[[EF q]](s)
Q2

[[p ∨ EF q]](s)

[[EXϕ ∧ c]](s)
EXc

[[EXϕ]](s)

B ⇒ p
atomic-rule

[[p]](B)

∃B1, B2 · [[ϕ]](B1) ∧ [[ψ]](B2) ∧ (B ⇒ (B1 ∨ B2)) ∨-rule
[[ϕ ∨ ψ]](B)

∃B1 · R(B, B1) ∧ [[ϕ]](B1)
EX

[[EXϕ]](B)

Fig. 8. Additional proof rules
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or other user preferences. In this section, we discuss various types of strategies and their
support in our framework.

5.1 Specifying Strategies

A user-specified strategy is created by implementing the Strategy interface shown in
Figure 7(b). In particular, the strategy can modify the default proof system before the
proof generation begins using init(), determine which subgoal is to be expanded using
pickLeaf(), and determine which rule out of the applicable ones is to be applied using
pickRule(). Finally, after the application of any proof rule, the strategy can execute its
own ruleApplied method. In addition, strategies have full access to the proof system:
they can examine the current proof, add or remove proof rules, and examine the result
of any rule application. Thus, they can affect the behaviour of the prover based on the
current subgoal, proof rules that have already been applied, other historical information,
subgoals yet to be proven, etc.

We now demonstrate how a few useful strategies can be specified in our framework.

Choosing the Smallest Subgoal. The goal of this strategy is to always pick a rule that
results in a subgoal with the least number of temporal operators. For example, suppose our
current subgoal is [[p∨EFq]](s), and there are two applicable proof rules for disjunction
(see rules Q1 Figure 8(a),(b)). Clearly, applying rule Q1 results in a shorter proof, and
therefore a shorter witness. An implementation of this strategy is shown in Figure 7(d),
and is accomplished by overriding pickRule() to pick the rule that results in the new
subgoal with the minimal number of temporal operators. The method tryApply() allows
the strategy to determine the new subgoal without modifying the proof tree. Note that this
is a greedy strategy – choosing the subgoal with the shortest length does not guarantee
the shortest witness or counterexample.

Preferring Explored Part of the Model. This strategy attempts to guide the witness
towards the part of the model that already appears in the proof. In general, a strategy
can control which states of the model are used as part of a witness by introducing
additional proof rules for the EX operator. For example, to ensure that all states of the
witness satisfy a propositional constraint c, the strategy must add the proof rule EXc

(see Figure 8) during its initialization, and then ensure that this rule is always applied
whenever possible.

The strategy PickExplored, shown in Figure 7(e), maintains a list of all states
visited by the proof in the list N , adds a new EX proof rule Q that prefers elements of
N , and modifies pickRules() so that Q is always picked when it is applicable. Finally,

generated by the model-checker. For example, when choosing the part of the formula
[[EFp ∨ EGr]](s3) to expand, the user may want to note that [[EFp]](s3) converged in
one iteration and [[EGr]](s3) converged in two, and thus pick [[EFp]](s3). Strategies can
also be automated, with decisions based on summaries, observed history of the execution,

the strategy updates the list of visited states via the ruleApplied() method. This is an
example of a strategy that uses the proof history in order to augment its behavior.
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Sequential Constraint. The goal of this strategy is to ensure that states that satisfy some
condition c1 alternate with states that satisfy another condition c2 on every path of the
witness. As with the PickExplored strategy, it begins by adding new proof rules for
the EX operator. Its pickRule method uses an additional boolean variable c1 state to
remember which of the two new rules was applied last, and augment its behavior based
on that. In general, one can automatically generate such a strategy from a state machine
that encodes a desired sequencing of constraints, e.g., one advocated in [2].

5.2 Discussion

The users of the framework do not have to interact with the proof engine explicitly.
Instead, the interaction is based on the concepts that are already familiar to the engineers.

Some strategies are packaged for manual interaction. For example, the default imple-
mentation of the method pickLeaf allows the user to choose which part of the witness to
extend by clicking on it. Some strategies are completely generic and serve as heuristics
that are applicable to any model. For example, to ensure the shortest witness, we can
combine strategies to pick the simplest subformula to explain, trying the current state
first when choosing the next state, guiding the witness through already visited states, etc.
Some other strategies, e.g., the one that ensures that every path of the witness satisfies
a given constraint, are parameterized. In this case, the user specifies the constraint, and
the interaction with the proof engine is automated. For example, the user can provide the
desired constraints in the form of a finite-state automaton, which is sufficient to generate
code for the appropriate Sequence strategy that deduces which proof rules to add and
when to apply them.

Typically, model-checkers implement some greedy strategy to generate a witness or
a counterexample. However, users can specify efficient strategies that use backtracking.
The complexity of these is controlled by restricting the number of applications of back-
tracking. For example, a strategy for generating a shortest witness for [[EXEFp]](s)
can be specified to pick the successor of s from which EF has the shortest bound.

Strategies are also essential for producing partial witnesses when full witnesses are
too large to be practical. For example, consider a witness to a property AFp which in the
worst case can be of the size of the entire model. The strategy might be to expand only
those paths for which the path to the state where p holds is at most x steps long. Since
the size of the underlying proof is proportional to the number of steps in the witness,
strategies ensure that usable proofs can be generated even for very large models.

6 Abstract Counterexamples

It is often convenient to see all counterexamples or witnesses to a given property at
once [7]. For example, consider the property [[EF r]](s0) evaluated on the Button module
from Figure 1(a). There are two witnesses of length 3 that justify this property: leading
to states s2 and s3, respectively, as shown in Figure 1(b). The information provided by
these witnesses can be summarized using an abstract witness resulting from merging
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R(s0, s1)

R(s1, {s2, s3})
r ∧ ¬f ⇒ r

[[r]]({s2, s3})
[[EXr]](s1)

[[EXEXr]](s0)

[[EFr]](s0)

Fig. 9. Proof of [[EFr]](s0) for the model in Figure 1(a)

the states at the same depth. In Figure 1(b), these states are identified via dashed boxes.
Each state in this abstract witness corresponds to one or more states of the model, and
can be expressed by a propositional formula. In our example, we obtain that the first
state of the witness must satisfy ¬p ∧ ¬r ∧ ¬f , whereas the second and the third state
should satisfy p ∧ ¬r ∧ ¬f and r ∧ ¬f , respectively. There is a disagreement on the
value of p between states s2 and s3, and thus p is not part of the formula describing the
third state.

Propositional formulas provide a very compact presentation of all of the witnesses
at once, which in turn helps focus the attention of the user to the more relevant parts of
the explanation. For example, by examining the constraint of the third state, we see that
the value of p is irrelevant. In [7], it was shown that such a presentation can dramatically
reduce the time required by the engineers to locate the real cause of an error.

In the rest of this section, we show that our framework can be used to generate
abstract witnesses for reachability properties, or equivalently, abstract counterexamples
for safety properties. Any reachability property can be expressed using a combination
of EX , and EU operators and propositional connectives [4]. To construct a proof that
captures all witnesses at once, we need to extend the corresponding proof-rules from
single states to sets of states.

For notational convenience, we write [[ϕ]](B) to stand for ∀s ∈ B ·[[ϕ]](s), where ϕ is
a temporal logic formula, and B is a set of states. Furthermore, we extend the transition
relation R to sets of states and write R(B,C) to stand for ∀b ∈ B · ∃c ∈ C ·R(b, c). To
prove that a propositional formula p holds in all states of a set B (written as [[p]](B)),
we need to show that B is a subset of the set of states defined by the formula p. That is,
p is compatible with the propositional constraints imposed by B. Formally, we obtain
the atomic-rule, shown in Figure 8. For example, the fact that r holds in the set of states
{s2, s3} of the Button module follows from the relation (r ∧ ¬f) ⇒ r. To prove that
ϕ ∨ ψ holds in a set of states B, we need to show that there exists a partitioning of B
into sets B1 and B2, such that ϕ holds in all elements of B1, and ψ holds in all elements
of B2. The above is captured by the ∨-rule, shown in Figure 8. Note that user-specified
strategies can influence the choice of this partitioning. For example, if a property ϕ is
more complicated than ψ, the user may prefer B1 to be empty, if possible.

To prove that EXϕ holds in a set of states B, we need to identify the successor states
of each state in B and prove that ϕ holds in them (see the EX rule in Figure 8). In
practice, the set B1 can be easily computed from the intermediate results of a symbolic
model-checker. For example, it can be instantiated to the set of all states that satisfy ϕ,
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and that are successors of states in B. Once again, the user can control the exact choice
of B1 using a proof-strategy, where picking the largest such set leads to an abstract
witness capturing all possible witnesses.

Recall from Section 4.1 that proof-rules for the EU operator are derived by reducing
it to a formula containing a disjunction, a conjunction, and an EX operator. Thus, it can
be trivially extended to sets of states using the rules defined in this section.

A sample proof produced via the above proof rules for the property [[EF r]](s0)
evaluated in the Button module, is shown in Figure 9. This proof captures all 3-step
witnesses for this property.

7 Conclusion

In this paper, we presented a general framework for generating and exploring witnesses
and counterexamples of temporal logic properties. The framework is based on building
evidence in the form of a proof and controlling which portions of the proof are expanded
and shown to the user either interactively or via user-specified strategies. Proofs also
facilitate easy generation of conventional witnesses, which in our case are augmented
with summaries describing which part of the property is being explained, whether a
given state is part of a loop, how many steps separate a given state from the one in
which a subproperty becomes true, etc. We have also created KEGVis – a prototype
implementation of the framework.

We are currently looking at ways to connect exploration strategies with temporal
logic property patterns [10]. Further, our preliminary experience with KEGVis indicates
that users often make similar choices during their interactive exploration of witnesses.
An automated strategy assistant that attempts to learn user preferences from previous
interactions with the system and suggest an appropriate strategy would greatly enhance
the potential usability of our framework. Finally, we are interested in how strategies can
be used for understanding the impact of changing a model.

We view our current implementation as a back-end for a successful evidence explo-
ration tool and, in its current form, it is by no means ready to be applied in an industrial
setting. To enable such an application, the tool must become much more user-friendly.
Most engineers find proofs too difficult, and, although proof-like witnesses bridge the
gap between proofs and models, the concept of a proof is currently central to node
summaries and some parts of the manual exploration.

For the sake of generality, our work has been on the level of the lowest common
denominator of the interaction between the user and the model-checker. Namely, we
assumed that the model of the system is given by a Kripke structure, and properties of
interest are specified directly in temporal logic. This makes it possible to easily combine
our approach with many of the existing model-checking tools. However, this also makes
the actual technique appear more complex than it really is.

For example, in software model-checking, the user interacts with a model-checker by
providing a source code of the program, and the model-checker automatically extracts
a Kripke structure from it. Clearly, in this case, it is not helpful to explain the result
of the model-checking run using states of this Kripke structure. Instead, such states
should be converted back to what they are meant to represent, namely, line numbers of
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the program and values of relevant variables. Furthermore, sequences of states can be
conveniently presented via interactive debug sessions. The proof part of the explanation
is still useful in such cases: it can be used to annotate the debug trace, e.g., to explain why
a particular branch of the program is taken next, or that the model-checker discovered
a non-terminating loop in the program. Presentation of many of such proof aspects can
also be tailored to a particular domain. For example, “an error in 3 steps” can become a
graphical icon in the annotation of the trace.

Overall, we feel that the presented framework is flexible enough to enable creation
of truly user-friendly tools that can facilitate effective model exploration and debugging
using model-checking technology.
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Abstract. The specification of meta-information, by using attributes
in .NET or annotations in Java, along with the source code is gaining
widespread use. Meta-information is used for different purposes such as
code generation or configuration of the environment in which a class is
deployed. However, in most cases using an annotation also implies that
constraints, beyond those defined by the language’s semantics, have to
be followed. E.g., a class must define a no-arguments constructor or the
parameters of a method must have specific types. Currently, these con-
straints are not checked at all or only to a very limited extend. Hence, a
violation can remain undetected and result in deployment-time or even
subtle run-time errors. In this paper, we present a user-extensible frame-
work that enables the definition of constraints to check the properties
of annotated elements. Further, we demonstrate the application of the
framework to check the constraints defined in the EJB 3.0 specifica-
tion, and an evaluation of the approach based on checking the xPetstore-
EJB3.0 project from within Eclipse to test the performance.

1 Introduction

The term meta-information refers to information about other information. In
the context of programming languages it denotes information about program el-
ements, which in turn represent information about an application domain. Meta-
information on program elements is generally used by runtime environments and
tools.

In Java, numerous examples of proprietary mechanisms to add meta-informa-
tion to programs exist. Examples are tags like @author or @version used by the
Javadoc tool to generate the class documentation. A similar approach is used
by other tools such as XDoclet[1], Commons Attributes[2], JBoss AOP[3], or
SGen[4]. Another example of extensive use of meta-information in Java are the
various XML files in technologies such as Enterprise JavaBeans (EJBs)[5], Java
Data Objects (JDO)[6], or Java Management Extensions (JMX)[7]. This infor-
mation is used to configure the environment in which a class is to be deployed.

Currently, standard mechanisms are emerging to add meta-information to
source code. In C#, [8] meta-information for source code artifacts like classes,
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methods, fields, etc. can be specified by means of attributes and in J2SE 5.0
by means of annotations [9]. The Java specification specifies six built-in annota-
tions, how to declare annotation types, how to annotate declarations, and how to
read those annotations later on. In addition to built-in annotations, there is also
support to create and use user-defined annotations. Each annotation is consid-
ered a Java modifier and can be applied to annotate package, type, constructor,
method, field, parameter, and local variable declarations. An annotation has a
type and defines zero or more member-value pairs, each of which associates a
value with a different member of the annotation type. E.g., in the following ex-
ample the declaration of the class CategoryX is annotated with the annotation
@Entity, whose member access is set to AccessType.FIELD, i.e., the container
should access the entity’s state using field access:

@Entity(access = AccessType.FIELD) public class CategoryX {...}

J2SE 5.0 annotations will have a fundamental effect on the way we program
in Java. This is indicated by current development efforts on future versions of
standard libraries. Major upcoming Java standards such as EJB 3.0[10], JDO
2.0[11], Java Web Services[12], or JDBC 4.0[13] will heavily rely on annotations.
Further, a specification request exists to develop a set of annotations that apply
across a variety of individual J2SE and J2EE technologies [14]. In the context
of these specifications, annotations will be used for different purposes such as
driving code generation, or supporting configuration. The rationale for the fast
and widespread adoption of annotations is the expectation that their use will
make the development process of components more lightweight and will flatten
the learning curve of the supporting technologies.

However, a fact that is overseen by these efforts is that the use of annotations
often imposes certain implementation restrictions on the decorated program con-
structs. Consider, e.g., the java.lang.Override annotation of Java 5, which can
be used to annotate non-abstract methods to state that they that must be over-
ridden in any subclass. Since java.lang.Override is a built-in annotation the
implied implementation restriction is enforced by the Java compiler.

This is, however, not true for user-defined domain-specific annotations. An
example for such annotations are those that will be part of the EJB 3.0 spec-
ification. In EJB 3.0, beans can be written as Java classes annotated with the
specified EJB annotations. Based on these annotations, the container will gener-
ate the corresponding home and remote interfaces and extract the configuration
information it needs. However, the effect of annotating a bean with, e.g., entity
should go beyond driving the generation of its interfaces and providing config-
uration information to the container. It should also mean that implementation
restrictions implied by the annotation, as explicitly stated in the specification,
should be checked for, just like restrictions implied by built-in annotations are
enforced by the compiler. An example of such a restriction on an entity bean is:
”An enterprise bean must not use thread synchronization primitives...”.
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From the discussion so far, it follows that automated annotation-based check-
ing of implementation restrictions is needed. The contribution of the work pre-
sented in this paper is to provide support for this need. We present a user-
extensible tool to bind checks of implementation restrictions to specific annota-
tions. The tool is the first application which builds upon Magellan [15] - a generic
platform for cross-artifact information retrieval during the software development
process. Magellan enables to define queries over a uniform representation of all
artifacts of a software project by mapping the artifacts of a project to XML rep-
resentations and storing them in a database. Then XQuery, a functional query
language for XML documents, can be used to query the database.

We extend this generic platform to check implementation restrictions based
on Java annotations. The extension employs a time-efficient evaluation of checks
by enabling a two-step querying process. In the first step, queries are run that
select those program elements that are of common interest for queries evaluated
in the second step. Certain implementation restrictions apply, e.g., only to entity
beans. A query of the first step will select all entity beans. The result of this
query determines the context for queries of the second step which encode the
logic for checking different implementation restrictions. Hence, information that
is needed by multiple queries is evaluated only once for all queries that need this
information. Since the queries evaluated in the first step define a context for the
evaluation of the subsequent queries they are called context-defining queries.

We also demonstrate the applicability of the proposed approach. As a proof
of concept, we implemented queries to check the implementation restrictions de-
fined by the EJB 3.0 draft1. These checks serve two purposes: (1) they demon-
strate that the query capabilities used in our approach are sufficient for practical
purposes, (2) they were used to evaluate the performance of our tool by run-
ning them against the xPetstore-EJB3.0 project. The results of this evaluation
indicate that the tool can be used to check restrictions for annotated declara-
tions on-the-fly for small to mid-sized projects (< 100-200 project classes), that
is while the checks are performed in the background it is possible to continue
editing in the foreground. Propositions about bigger projects cannot be done
currently since there are no such projects publicly available that already use
Java annotations. We will, however, provide some insights with this regard later
in the paper.

This paper is structured as follows. The following section discusses the data
model and the query language XQuery. Then queries to check implementation
restrictions are discussed in Sec. 3. In Sec. 4 the architecture of the tool is
presented and how queries are evaluated. In Sec. 5 we evaluate the performance
and memory characteristics of our tool to show the feasibility of our approach.
Related work is discussed in Sec. 6. Sec. 7 summarizes the paper and shortly
discusses areas of future work.

1 A prototype of the tool, including the checkers, is available as an Eclipse plug-
in and can be downloaded from http://www.st.informatik.tu-darmstadt.de/

pages/projects/Magellan.
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2 Data Model and Query Language

2.1 Data Model

In this section, we discuss the data model that is the basis for the develop-
ment of checkers. Since one goal of our approach is to provide a user-extensible
tool, the selection of a comparable easy to comprehend data model is crucial.
Due to the widespread knowledge of XML technologies we decided to build it
upon an XML representation. A second reason for choosing XML is the free
availability of industry-strength query languages. However, choosing XML as
the underlying data format is not sufficient on its own. Additionally, we had
to decide what kind of data should be represented. For the representation of
Java code basically two choices exist. Either an XML representation of the ab-
stract syntax tree (AST) of the source code can be used or a byte code based
representation. At a first glance a representation based on the AST might look
advantages because it is closer to what a standard Java programmer is used
to. However, a bytecode representation has two advantageous. First, bytecode
is less variform. E.g., in Java a field can be initialized directly, in an initializer,
or in a constructor, but in bytecode all fields are initialized in a constructor.
Hence, in bytecode the number of different cases how certain functionality can
be expressed is smaller. This makes the development of checkers easier because
it is not necessary to take multiple different possibilities into account. A second
important point against choosing an AST-based representation is that checking
an implementation restriction might require access to pre-built libraries that
are not always available in source code (e.g., to determine inter-class relation-
ships); so, some integration with a byte code representation would be needed
anyway.

Our decision was to use an XML representation of the bytecode which is
generated by BAT2XML [16]. As a result the development of a checker might
require some knowledge about Java bytecode and its XML representation in
particular. Let’s make an example to show how the XML database containing
a representation of a Java class looks like. Assume we have the following class
which declares a variable and a method, and uses annotations:

1 package xpetstore.domain.catalog. ejb ;
2

3 @javax.ejb . Entity public class Category implements Serializable{
4 private Long categoryId ;
5

6 @javax.ejb . Id public Long getCategoryId() {
7 return categoryId ;
8 }
9 }

Listing 1.1. Category.java
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The XML representation of this class, generated by BAT2XML, is shown in list-
ing 1.2 from line 6 to line 28.2 The class itself is represented by the class element
in line 6, while the method (line 16) is represented by a method element, and a
field by a corresponding element (line 14). The attributes of these elements are
self-explaining and define the properties of the declarations. The implementa-
tion of the method is shown in line 22 - 25; the field read access (categoryId)
is represented by the get element (line 23).

1 <db:all>
2 <db:document type=”source”
3 documentID=”file:/[PATH]/xpetstore/domain/catalog/ejb/Category.class”
4 tag=”de.tud.xirc.processor.input.ClassFileInputProcessor” >
5

6 <class
7 name=”xpetstore.domain.catalog.ejb.Category” visibility=”public” ...>
8 <annotations> <runtime visible>
9 <annotation type=”javax.ejb.Entity”/>

10 </ runtime visible> </annotations>
11 < inherits> <class name=”java.lang.Object”/>
12 < interface name=”java.io.Serializable”/> </inherits>
13

14 <field type=”java.lang.Long” name=”categoryId” visibility=”private” .../>
15

16 <method name=”getCategoryId” visibility=”public” ...>
17 <annotations> <runtime visible>
18 <annotation type=”javax.ejb.Id”/>
19 </ runtime visible> </annotations>
20 <signature> <returns type=”java.lang.Long”/> </signature>
21 <code>
22 <load index=”0” />
23 <get declaringClassName=”xpetstore.domain.catalog.ejb.Category”
24 fieldName=”categoryId” type=”java.lang.Long” />
25 <return />
26 </code>
27 </method>
28 </class>
29 </db:document>
30 </db:all>

Listing 1.2. XML representation of the byte code of the Category class in the database

The db:all element (line 1) is the root element of the database and the
db:document element (line 2 - 4) is used to structure all documents in the

2 The compiler generated default constructor is omitted for brevity.
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taining the database (line 3) and to enable further processing of query results
(line 4).

2.2 Query Language

After choosing the data format we decided to use XQuery to implement the
checkers. XQuery [17] is a query language especially well suited for XML data
sources. While XQuery is a functional language comprised of several kinds of
expressions that can be nested and composed with full generality, we will only
elaborate on the features relevant to this paper. The most important among
them is the notion of path expressions3. In a nutshell, a path expression selects
nodes in a (XML-)tree.

For illustration, consider the previous XML document (Listing 1.2). We can
parse this document by accessing the top-level document node (db:all) of
the corresponding tree. Then the path expression db:all/db:document/class/
method/code/get selects the get nodes, resulting in the node spanning line 23
to line 24 in Listing 1.2.

In general, a path expression consists of a series of steps separated by the
slash character. The previous path expression has the steps, namely the child
steps, db:all, db:document, class, method, code and get. The result of each
path expression is a sequence of nodes. XQuery supports different directions in
navigating through a tree, called axes. In the path expression above, we have seen
the child axis. Other axes that are relevant for this paper are the descendant
axis (denoted by “//”), the parent axis (denoted by “..”), the ancestor axis
(denoted by “ancestor::”) and the attribute axis (denoted by “@”). Using the
descendants/ancestor axis rather than the child/parent axis means that one step
may traverse multiple levels of the hierarchy. For example, the above query could
be rewritten as: //get.

The attribute axis selects an attribute of the given node, whereas the par-
ent axis selects the parent of a given node. For example, the path expression
//method/../@name selects the name attribute of the declaring class of a method.
Another important feature of XQuery is its notion of predicates – (boolean)
expressions enclosed in square brackets to filter a sequence of values. For in-
stance, the query //method[@name="getCategoryId"] selects all methods with
the name getCategoryId. One can bind query results to variables, which in
XQuery are marked with the $ character, by means of a let expression, as
illustrated below.

let $entityAnnotations := //annotation[@type=”javax.ejb.Entity ”]
return $entityAnnotations/ancestor :: class [ @final = ”true”]

XQuery also offers a number of operators to combine sequences of nodes,
namely union, intersect and except, with the usual set-theoretic denotation,

3 This subset of XQuery is a separate standard called XPath [18].

database. Its attributes define necessary information that are required for main-
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except that the result is again a sequence in document order, if required. The last
relevant feature of XQuery is its notion of a function definition. For illustration,
the function directSupertypes is shown below, which, being passed a set of
class definitions, returns the classes that are directly inherited.

declare function xirc : directSupertypes ( $classes as element()∗) as element()∗ {
db: all /db:document/(class| interface )

[@name =$classes/inherits/( class | interface )/@name]
};

3 Checking Implementation Restrictions

In the following, we exemplary discuss the implementation of some checks on
top of the discussed data model and query language to illustrate the possibilities
offered by our approach, and to give an idea how to define new checks. Basically,
a checker is just a query that selects elements which violate a restriction. Let us
consider a simple check first. The EJB 3.0 draft specification[10] states in section
6.1 [Requirements on the Entity Bean Class] that:

The entity bean class must not be final. No methods of the entity bean
class may be final.

A possible checker is shown in the next listing. The first line selects all classes
that have the javax.ejb.Entity annotation and stores the result in the variable
$ebs. The variable $xirc:project-files is the set of all classes that are not
defined in a library (.jar file). After that, line two determines for all entity
beans ($ebs) the set of classes and methods that are declared final.

1 let $ebs := $xirc : project−files / class [./ annotations//@type =”javax.ejb.Entity ”]
2 return $ebs[ @final = ”true”] union $ebs/method[@final =”true”]

Certain annotations can only be used in combination [19]. E.g., annotating
a method with javax.jws.WebMethod requires that the class is annotated with
javax.jws.WebService[12]. To check this dependency the following query first
selects all classes that declare a method with the WebMethod annotation (line 1)
and then subtracts (line 2) all classes that are annotated with the WebService
annotation (line 3). The set of classes that have WebMethods but do not declare
to be a WebService is returned.

1 $xirc : project−files / class [.// annotations//@type =”javax.jws.WebMethod”]
2 except
3 $xirc : project−files / class [./ annotations//@type =”javax.jws.WebService”]

The queries discussed so far could also be implemented using Java reflection,
though the corresponding Java implementation would be harder to read and
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would require more effort: Explicit iteration over all classes and methods and
checking each class’ and method’s modifiers. Fully checking the following restric-
tion is no longer possible using Java Reflection because it requires information
about a method’s implementation, which is not exposed by Java Reflection. The
EJB 2.1 specification (which is referenced by EJB 3.0) states in section 25.1.2
[Programming Restrictions]:

An enterprise bean must not use thread synchronization primitives to
synchronize execution of multiple instances.

The following query checks that (a) no method is synchronized (line 2), that (b)
synchronize is not used (line 3) - using Java’s synchronize statement manifests
in monitorenter and monitorexist instructions at Java bytecode level -, and
that (c) none of the wait or notify methods is called (line 4 - 7).

1 let $c := $xirc : enterprise −beans()
2 return $c/method[@synchronized=”true”]
3 union $c/method/code//monitorenter
4 union $c/method/code//invoke[@declaringClassName=”java.lang.Object”
5 and (@methodName=”wait” or
6 @methodName=”notify” or @methodName=”notifyAll”)]

The queries discussed so far are self-containing, i.e. the queries can be executed
as is against the database. However, during the development of the EJB 3.0
checkers we realized that many queries have identical parts. E.g., the queries to
check an entity bean’s implementation restriction nearly always started with a
path expression to determine all classes that are entity beans:

let $ebs := $xirc : project−files / class [./ annotations//@type =”javax.ejb.Entity ”]

Even more important, these parts required a significant amount of a query’s
evaluation time: In the case of a simple query up to 80-90%. To improve the
performance of the query evaluation as well as to support a better modular-
ization of the common part of queries we introduce context-defining queries. A
context-defining query is a standard XQuery query where each node in its result
set defines a context node for the subsequent evaluation of other queries. This
node is passed to the query and can be accessed by using the “.” operator. Mul-
tiple queries for checking implementation restrictions together with one context
defining query are defined in a so-called Query Container.

For example, in Listing 1.3 lines 3-9 define a context defining query, which
selects all classes that are enterprise beans. For each enterprise bean returned
by the context-defining query the query defined in lines 14 - 16, which repre-
sents an implementation restriction, is evaluated. At the beginning of line 15
the context node, i.e. a class that is an enterprise bean, is accessed and used to
select a finalize() method, if present. The listing also shows how to associate
additional information (line 11 - 13) with a query.
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1 < implementation restriction container >
2 < context definition type >query</context definition type>
3 < context definition >
4 /db: all /db:document[@type = ”source”]/class[
5 ./annotations//@type = ”javax.ejb. Stateless ”
6 or ./annotations//@type = ”javax.ejb. Stateful ”
7 or ./annotations//@type = ”javax.ejb. Entity”
8 or ./annotations//@type = ”javax.ejb.MessageDriven”
9 </ context definition >
10 < implementation restriction id=”FinalizeMethod”>
11 <title>An enterprise bean must not define the finalize () method.</title>
12 <description>(see EJB 3.0 specification )</description>
13 <severity>error</severity>
14 <query>
15 ./method[@name=”finalize”’ and empty(./signature/parameter)]
16 </query>
17 </ implementation restriction > ...
18 </ implementation restriction container >

Listing 1.3. CommonEJB.XML; Query Container Definition

4 Architecture

As mentioned before, our tool is based upon Magellan [15], an open, cross-
artifact information engineering platform integrated into the Eclipse IDE. Mag-
ellan provides the following services. Documents (in particular Java class files)
are converted into corresponding XML-based representations and stored into a
database. Changes to documents are tracked to keep the internal database up
to date. In addition, a basic query facility is provided. When a client executes
an XQuery query the corresponding XML nodes are returned as the result.

To check implementation restrictions our tool (XIRC) builds upon the Mag-
ellan platform and uses the provided services. For increased usability, XIRC is
also developed as an Eclipse plug-in; however, the concept is also applicable
to any other front-end, e.g., an integration with ANT. A user can enable the
checking functionality on a project basis. If checking is enabled, the tool then
creates special folders for managing the queries. Besides creating new query def-
initions in those folders and dropping existing query definitions in them it is also
possible to include predefined checkers from a third party plug-in. This enables
cost-effective reuse of checkers for common tasks, e.g., the checkers for EJB 3.0
are available as such a plug-in. Checking is triggered any time a resource, i.e.
a Java class file or a checker, changes. Immediately after a change the Magel-
lan plug-in synchronizes the database as discussed. Next, all queries found in the
folder structure or provided by a plug-in are evaluated. The results of each query
are passed to a special handler that is responsible for processing the resulting
XML nodes. In this case, the handler maps the nodes back to the corresponding
locations in the source code (e.g., to a class / method / field declaration or to a
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Fig. 1. Violations of constraints implied by annotations in Eclipse

line number in the source code). Additional information defined along with the
query, such as the severity of the restriction or a problem description, are used
to inform the developer about the broken restriction (see Figure 1).

Figure 1 shows an example of the results from multiple queries. In the lower
half of it the standard problem view of Eclipse is shown with multiple violated
restrictions for class CategoryX. The developer can see the severity, a description
and the location where the violation occurs. ¿From the second last entry in the
problems view it can be seen that it is possible to navigate to the corresponding
location in the source code by selecting an entry.

5 Evaluation

Before we will discuss the performance, we first discuss the effort necessary when
developing new checkers. We made the experience that the biggest effort when
writing queries is to learn to use XQuery. The effort was not to understand
the XML representation generated by BAT2XML. This is probably due to the
fact that most checkers do not require sophisticated control-flow or data-flow
analysis and that it is sufficient to simply take a look at the XML representation
of a class to write the query. A detailed knowledge of the execution semantics of
bytecode instructions is not necessary. Hence, we expect that developers familiar
with XQuery and Java can immediately start writing queries to check structural
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Table 1. Evaluation times of queries

Short Description Seconds

CommonEJB.xml
∑

0.643225
context defining query 0.023961

an EJB must not start threads 0.017519
signature of call back method is invalid 0.069257
the chosen transaction attribute cannot be used 0.011743
an EJB must have a no-arg constructor 0.010397
a business method must not start with “ejb” 0.012741
an instance that starts a transaction must complete the transaction
before it starts a new transaction

0.385770

(get|set)RollbackOnly should be called only in bean methods that
execute in the context of a transaction

0.044467

UserTransaction is unavailable to EJBs with CMT demarcation 0.011552
a TransactionAttribute can only be specified with CMT demarcation 0.012814
EJBs should not handle concurrent access on their own 0.013553

SessionEJB.xml
∑

0.831755
context defining query 0.204696

for update / delete operations a transaction context is required 0.047968
argument and return types must be legal types for RMI/IIOP 0.476183
argument and return types must be legal types for JAX-RPC 0.027315
multiple business interfaces should be annotated as Local or Remote 0.046658
this SessionContext’s method cannot be called 0.024672

EntityEJB.xml
∑

1.928637
context defining query 0.147486

persistent field has invalid type 0.463888
persistent properties with @Basic may not be an entity association 0.016634
invalid dependent class 0.159400
a protected field is to accessed by the defining class only 0.032637
an entity bean that is a subclass of another entity bean must have the
same primary key

0.155760

entity beans must have getter/setter-methods for persistent fieds 0.099020
collection-valued persistent properties must have type
java.util.Collection or java.util.Set.

0.737543

invalid type for primary key 0.080830

MessageDrivenEJB.xml
∑

0.015559
context defining query 0.011637

properties and that those checks can be written in a reasonable amount of time,
that is implementing and testing a query requires less than an hour.

To assess the potential, performance, and memory consumption of our ap-
proach we have developed a full set of queries to check the constraints defined
in the EJB 3.0 draft specification[10]. The queries were evaluated against a demo
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release of the xPetstore project[20]4 project that was updated by Bill Burke and
Gavin King for EJB 3.0.

The following measurements were taken on an Intel Celeron 2.40 GHz system
with 504 MB RAM running Windows XP and using J2SE 5.0, Saxon 8.1 and
Eclipse 3.1M2 as the underlying platform. The XML database had 2833 class
entries, which represented all public classes and interfaces of all Java APIs5

delivered with Java 5, except for classes in the javax.swing.* and java.awt.*
packages. Additionally, all necessary JARs to compile the xPetstore project were
included. The evaluation for the original xPetstore project which run without
any error being signaled required 1.97 seconds. To make the evaluation more
realistic, we injected some more or less severe problems into the project code. The
evaluation of all 48 queries against the messed project code generated correctly
53 messages and was executed in 3.56 seconds. In both cases, the time required
by Eclipse to recompile the source file and to update the Magellan database
should be added, which amounts to another 1-2 seconds. To keep the Magellan
database in memory approximately 40 MB are required.

Detailed execution times are shown in Table 1; the table lists the times re-
quired to evaluate the query containers (printed bold) as a whole, as well as
the times required for the evaluation of each context defining query, and the
times for the queries to check the constraints along with a short description of
the checked constraint. Queries that took less than 10 milliseconds to evaluate
are omitted for brevity. The descriptions were shortened; the messages shown to
developers are more detailed.

The result of this preliminary analysis shows that the overhead (less than
five seconds and running in a non-blocking background process), generated by
checking all implementation restrictions, is acceptable for a day-to-day usage.
Further, the evaluation shows that the implementation restrictions defined by
EJB 3.0 can be checked by using a declarative, though functionally complete,
query language; it is not necessary to write the checks as imperative meta-
programs in a “standard programming language” such as Java.

6 Related Work

The purpose of FindBugs[21] is to find bugs or potential bugs in existing projects
based on control and data flow analysis. In contrast to our tool, FindBugs does not
enable to write declarative queries. Instead, to detect a bug a visitor[22] has to be
written that visits the in-memory representation of a class’ bytecode and reports er-
rors andwarnings. JLint[23] andJiveLint[24] are further tools to detect bugs,which
are similar in scope and functionality to FindBugs. However, while these tools are
concerned with identifying general bugs that are independent of the usage of spe-
cific frameworks our approach is targeted at identifying specific implementation
restrictions that need to be checked if and only if a specific framework is used.

4 xPetstore-EJB3.0: http://cvs.sourceforge.net/viewcvs.py/jboss/xpetstore-ejb3.0/
5 Classes starting with com.* are irrelevant for the checks and were not included.
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IRC [25] is similar to FindBugs in the respect that a checker also analyses
the in memory representation of a class’ bytecode. But in contrast to FindBugs
a sophisticated framework exists to programmatically construct queries to check
the code. So, while evaluation speed is explicitly targeted by IRC writing a query
still involves writing Java code and requires detailed knowledge of the internal
representation of the byte code. Based on a comparison of the development
of checkers using IRC and our new tool XIRC our experience is that writing,
maintaining and evolving declarative queries on top of an XML representation is
easier and can be done in less time. The development of checkers (for EJB 2.1)
for IRC needed approximately double the time than the development for XIRC;
though, the preconditions were comparable: The students who developed the
checkers had no knowledge about the framework or the byte code representation
in case of IRC and no knowledge about XQuery or the XML representation of
byte code in case of this work.

AspectJ[26] can also be used for constraint checking[27]. However, AspectJ
was not primarily designed to do it and, as we have argued in [25], the possibilities
offered by static pointcuts to detect violations of constraints are too limited to
be useful in general.

PMD[28] is similar to our tool in the respect that it also supports to write
declarative queries by using XPath, which is an important part of the XQuery
language. However, PMD operates on the abstract syntax tree of a program and
its primary goal is to check the style of a program and not the semantics. In
particular, the used abstract syntax tree does not contain resolved type infor-
mation, e.g., the types of the formal parameters of a method are not available
from looking at a method call node in the AST. This makes writing queries that
take type information into relation or that need to span multiple classes tedious
and error-prone. Checkstyle[29] is similar to PMD and suffers from the same
problem.

The idea of Splint[30] is to annotate the source code (ANSI C) to make design
decisions or implementation restrictions explicit. E.g., to annotate a parameter
with @notnull to indicate that the parameter should never be null. Splint will
then perform a static analysis of the code using the annotations and report vi-
olations. Splint is designed as a compiler; extensibility by users was not a goal.
However, it would be an interesting exercise to develop a set of similar Java
annotations and checks that can be used by developers to make implementation
restrictions explicit in their code and which are checked.
ESC/Java2[31] also uses annotations of the Java source code to enable an ex-
tended static analysis. Since ESC/Java is based on theorem proving the evalua-
tion times are very high [32]; on-the-fly evaluation is out of scope.

7 Summary and Future Work

With the standardization of annotations in J2SE 5.0, a common metadata facility
is now available for the programming language Java. Forthcoming standards in
the Java landscape such as EJB 3.0, JDBC 4.0 and Web Services Metadata
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show the widespread adoption of annotations. As argued previously, the usage
of meta information in program code often implies that specific implementation
restrictions have to be obeyed by the annotated declarations to guarantee that
the program will work properly. Though, implementation restrictions are not
new we argue that annotations represent perfect join points in the source code
where to start checking restrictions.

We have shown that our tool can check structural properties of classes by us-
ing annotations, and that the checks themselves can be defined using declarative
queries. For evaluation we applied our framework to the EJB 3.0 specification
and, as our evaluation suggests, the performance is already good enough to use
it for small to mid size projects. The tool is user-extensible and fully integrated
into the Eclipse IDE enabling checks during the development process.

To the best of the authors knowledge, we presented a first fully-integrated
tool which is capable of on-the-fly checking of properties based on Java’s new
annotation facility.

Currently, all queries are always evaluated against the entire database, which
is reasonable fast for small to mid sized projects. But for large projects with
hundreds of classes the achieved performance may be too slow; even though
the evaluation is executed in the background, evaluation times beyond 10 to 15
seconds are not acceptable. The problem is that a long-running build process may
prevent other (background-)processes from execution and may finally require
the developer to stop the work until the processes have completed. To achieve
faster evaluation times we are going to investigate queries that are evaluated
per changed document, i.e., a changed document is set as the context node
for the query evaluation. However, in this case it is necessary to keep track of
all documents visited by a query in order to know when to reevaluate it. The
question is, if the necessary effort for tracking and managing these information
finally pays off.
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Abstract. In situations in which developers are not familiar with a
system or its documentation is inadequate, the system’s source code be-
comes the only reliable source of information. Unfortunately, source code
has much more detail than is needed to understand the system, and it
disperses or obscures high-level constructs that would ease the system’s
understanding. Automated tools can aid system understanding by iden-
tifying recurring program features, classifying the system modules based
on their purpose and usage patterns, and analyzing dependencies across
the modules. This paper presents an iterative, user-guided approach to
program understanding based on a framework for analyzing and visual-
izing software systems. The framework is built around a pluggable and
extensible set of clues about a given problem domain, execution envi-
ronment, and/or programming language. We evaluate our approach by
providing the analysis of our tool’s results obtained from several case
studies.

1 Introduction

Adding new functionality to an existing software system starts with a process
of understanding the system’s architecture, i.e., its structure, behavior, and key
non-functional properties [12, 13]. This becomes difficult in the case of large
systems for which the documentation does not exist or is outdated. Many low-
level details in the source code obstruct the process of creating a system’s high-
level, architectural abstraction, which aids in reasoning about the system.

A number of software “clustering” techniques have been developed to cope
with this problem [9, 10, 11, 14] but these techniques fail to provide much ratio-
nale behind the architecture. This becomes particularly important if we consider
that the source code may actually contain accidental or emergent functionality
and relationships which are not intended by the system’s developers. Further-
more, clustering approaches are not always effective tools for performing ar-
chitectural recovery. For example, our experience [9] has shown that in layered
systems these approaches do not actually recover the layers, but tend to “slice”

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 253–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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across them since the clustering is usually based on the existence of strong cou-
pling (inter-layer) relationships.

For this reason, we posit that architectural recovery, and software cluster-
ing in particular, need to be accompanied by a system understanding activity,
which includes the use of semantic information before any syntactic dependen-
cies are considered, and whose goal is to help engineers control the architectural
recovery process, and identify and correct any inconsistencies therein. Various
representations can be used to describe successive levels of system’s abstractions.
Incited by Perry and Wolf’s observation [12] that the key architectural elements
of a software system are (1) processing, (2) data, and (3) connecting, we have
developed ARTISAn, a tool-supported, pluggable framework intended to aid
program understanding and, ultimately, architectural recovery.1 Our approach
is based on both structural and semantic analysis, where various design- and
implementation-level constructs, termed clues, are used to classify, label, and
collapse the system’s elements (e.g., classes) into the three major categories.

The ARTISAn framework is tailorable. It comprises replaceable components
to accommodate the exact programming environment. For example, the frame-
work is instantiated with different components for various programming lan-
guages or off-the-shelf “utility” technologies such as middleware. ARTISAn pro-
vides a rich, interactive web of information to an engineer, allowing her to add,
remove, or change both the clues and other analysis rules (and then reapply
them), manually relabel any analysis results (and then observe how that new
information is affecting the rest of the system), enact “what if” scenarios to
identify key relationships and dependencies in the system, all the while being
able to “undo” any changes. ARTISAn can also be further tailored for situations
in which the division of system elements into processing, data, and connection
may be overly general.

We have developed a prototype of ARTISAn targeted at Java systems. The
tool is integrated with IBM Rational Rose r©. We have applied ARTISAn on a
number of third-party software applications to date, and report on those results.

This paper is organized as follows. Section 2 introduces an example applica-
tion used to explain the approach, which is described in Section 3. In Section 4
we provide an evaluation of our approach. Section 5 presents related work and
Section 6 summarizes our contributions and opportunities for future work.

2 Case Study

In this paper we are using a case study to illustrate our approach. The ANTS
case study (Autonomous Negotiating agent TeamS) is an embedded agent ne-
gotiation system in which multiple, intelligent (software) agents negotiate over
the best use of available resources (radars) to track a series of targets [2, 3]. The
system was implemented in Java, and comprises over 200 classes developed by

1 ARTISAn stands for Architectural Recovery via Tailorable, Interactive Source-code
Analysis.
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Fig. 1. UML class diagram for the ANTS Visualizer system

several organizations. The main components of the system are Agent, GTServer,
CPAPI and a real-time Visualizer. While we used the entire ANTS system to
evaluate our approach, the illustrations used in this paper are limited to its non-
trivial visualization subsystem. Figure 1 depicts the class diagram of the ANTS
Visualizer subsystem, where Agent, GTServer, and CPAPI components are de-
picted as single classes due to their complexity. These components communicate
over the network via TCP/IP. There are three different types of input devices:
Sensor, Target, and Tracker. While sensors track targets, trackers use sensor
data to estimate targets’ locations. Each data item is stored in a new Device
instance and it is the responsibility of the Scenario class to keep track of both
the current state and the change history of all devices. Finally, TrackFrame is
used with other GUI-based classes to process and visualize the data.

3 Approach

Our approach (Figure 2) comprises three steps that are initially performed se-
quentially but may then be revisited in any order by the user. The first step,
termed initial labeling, results in a classification of individual elements into pro-
cessing (P), data (D), and communication (C) [12] based on ARTISAn’s clues.
The result obtained during the initial labeling phase and a pluggable set of prop-
agation rules provide input to the propagation labeling step. During this phase,
some non-labeled elements become labeled (i.e,. classified as P, D, or C), based
on the recognition of structural patterns and relationships with other, already
labeled elements. Furthermore, this step also identifies possible structural incon-
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sistencies among labeled elements and alerts the user about them. Initial labeling
and propagation labeling result in an interpretation of the system that suggests
the purpose of each of the system’s individual elements.

Finally, during the def-use
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Fig. 2. The ARTISAn framework

analysis phase, regions of re-
lated elements are identified
based on invocation and in-
heritance relationships. The
obtained regions distinguish
between elements that are
shared across regions and
those that are exclusive to a
region. The result of this
phase is a system’s usage
view representation, which
provides information on parts
of the system that could be
grouped together based on
their usage scenarios.

Individually, the purpose and usage views provide the user with a classifica-
tion of elements and their grouping based on usage analysis, respectively. These
two views also complement each other. For example, if some unlabeled elements
from the purpose view end up belonging to the same region with labeled elements
of a single type, then one can surmise the purpose of the unlabeled elements.
In total, our approach gives the user a better understanding of the system, and
an opportunity to faster locate its parts that are of particular interest (e.g., for
maintenance purposes).

The remainder of this section provides the rationale of our approach and
describes each of the steps depicted in Figure 2 in more detail.

3.1 ARTISAn Clues and Initial Labeling

At the most general level, software systems integrate processing elements that ex-
change data via communication (connecting) elements [12]. By determining the
type of a system element, one can distinguish elements with application-specific
functionality from those with application-independent functionality. Typically,
processing elements provide application-specific functionality as they implement
the system’s requirements. On the other hand, communication elements typi-
cally provide application-independent interaction facilities. In Java, for example,
classes interact by invoking each other’s methods and/or sharing data through
public variables, regardless of the classes’ functionality. In addition, a number
of off-the-shelf communication elements (e.g., middleware) are available. A use-
ful starting point in understanding the source code of a system is thus in the
reusable, application-independent nature of its communication elements. Simi-
larly, data elements only contain the information that is used or transformed by
processing elements. Therefore, by identifying and then abstracting away data
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package Visualizer;

import java.net.Socket;

public class ClientHandler{
    Socket _socket;
    DataInputStream _instream;

    ...

}

communication
channel

Fig. 3. Communication clue

ClientHandler

java.net.Socket

 

Fig. 4. An excerpt from the
ANTS Visualizer class diagram

elements, the reasoning about the system is improved (e.g., applications built
using the pipe-and-filter architectural style).

Software systems are generally described by their design or implementation
models (e.g., class diagrams). Often, the models are too detailed, so that their
understanding becomes obscured. In ARTISAn, constituent elements of these
models (e.g., classes) are at first classified into the three aforementioned cate-
gories (Processing, Communication, and Data), providing an engineer the op-
portunity to quickly gain an overview on the purpose of individual elements and
the structure of their composition. The process of classifying system elements
into one of the three categories is termed labeling. The labeling is based on var-
ious design and implementation snippets, termed clues. Clues carry syntactic,
semantic, and possibly domain-specific information, which is searched for in a
system’s model.

Figure 3 depicts a segment of Java source code from the ANTS system that
illustrates how clues are identified. In the example, there is an attribute socket
that declares a use of the standard network socket library java.net.*. This infor-
mation is a clue to the existence of a communication channel, which is directly
used by this class. We should note that clues could also be identified from a
system’s graphical model representation (e.g., its class diagrams), which enables
the potential easy integration of our approach with already available visualiza-
tion tools. For example, the same communication clue exists in Figure 4, which
represents an excerpt from the ANTS Visualizer class diagram.

Each clue is represented as a 4-tuple: (1) Impact : if found, what is the meaning
of a clue, i.e., is the element of type P, or C, or D? (2) Base: describes the software
artifact in which we expect to find a clue (e.g., method, class, procedure); (3)
Condition: a condition that must be satisfied for a clue to be found (e.g., a class
whose name starts with “java.net”); (4) Language: the programming language
to which clue applies. For example, the Java “Socket” clue, described above, is
defined as (C, class, class.name = “java.net.Socket”, Java).

Although it is difficult to automatically understand the exact purpose of a
processing element, it is possible to recognize such an element’s existence through
source code declarations. There are several clues that could be used in the detec-
tion of processing elements. For example, all classes that implement the static
method main, or inherit from the library class java.lang.Thread, or implement
the java.lang.Runnable interface are likely to be processing elements. Applied



258 V. Jakobac, A. Egyed, and N. Medvidovic

Table 1. Domain-independent clues

Impact Base Condition

P

class.method name=“main”

class
implements=“java.lang.Runnable”
extends=“java.lang.Thread”
extends.startsWith(“java.awt”)

C class
name.startsWith(“java.io”)
name.startsWith(“java.net”)

D class

parent.type=“D”
no methods other than constructor(s)
extends=“java.lang.Exception”
name=“java.util.Vector”, “java.util.Hashtable”, . . .
implements=“java.net.Serializable”

to our case study example, this means that all classes in a model that have the
“main” method are classified as processing classes, such as TrackFrame, Agent,
and GTServer in Figure 1. In a similar way, ClientHandler is labeled as a pro-
cessing element since it implements the Runnable interface. Additionally, system
elements that provide the GUI functionality are considered as a subcategory of
processing elements. They are easily recognized based on the use of dedicated
GUI libraries (e.g., java.awt.* ). Similarly, ARTISAn defines data-element clues.
For example, all classes with only a constructor method and non-empty attribute
list are likely to serve as data stores.

The clues described above all belong to ARTISAn’s extensible and pluggable
set of clues. We expect each programming paradigm and language, domain,
and/or application to have their own set of clues. Those clues would be identi-
fied by language and domain experts and integrated into the framework. ARTI-
SAn distinguishes between the following clue categories: (1) Domain-independent
clues, such as the Socket class being classified as C, or a class with no meth-
ods being recognized as D; (2) Domain-specific clues, e.g., in case a system is
built on top of a known middleware platform (e.g., an element of the Siena
middleware is classified as C and the classes having access to the Siena are ap-
propriately marked); and (3) Application-specific clues, such as a class of name
“jigsaw.Resource” in the Jigsaw Web server being recognized as D.

Table 1 lists the Java-based clues that we have used to evaluate our approach.
All the clues listed in Table 1 fall into the category of domain-independent
clues. They can be applied to a wide range of (Java) software systems and
can be naturally complemented by the more narrowly applicable domain- or
application-specific clues.

We should note that, in general, ARTISAn does not require application-
specific source code to follow any pre-defined naming conventions. However,
ARTISAn provides support for using naming conventions in situations where
such a collection of rules is available, such as with standardized libraries.

ARTISAn uses different colors to represent different classes’ labels on the
class diagram, or combinations of these colors if a class has more than one label.
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Fig. 5. The resulting diagram after the initial labeling step

Unlabeled classes remain transparent. However, in order to increase the read-
ability of the illustrations in this paper, we additionally edited the diagrams
by gray-scaling the labeled classes and drawing filled boundaries around classes
of the same color. Figure 5 depicts the ANTS Visualizer diagram obtained af-
ter the initial labeling step is performed. Classes such as Agent, TrackFrame,
or GTServer, which are inside the medium-gray boundary, indicate processing
components. Classes such as DataOutputStream or Socket, inside the dark-grey
boundary, indicate communication-based connectors. Finally, classes bounded
by the light-grey shape indicate GUI elements, i.e., a subcategory of processing
elements.

It should be noted that the clues are designed in such a way that applying
them may identify one or more categories that an element belongs to, but also
one or more categories to which the element does not belong. We refer to the
former as an inclusion set, and to the latter as an exclusion set. For example,
the Socket class will have C in its inclusion set, and P and D in its exclusion
set. In other words, while this element is labeled as communication element, we
also know that it cannot be processing or data. This information is of particular
importance during the propagation labeling phase.

3.2 ARTISAn Rules and Propagation Labeling

It is very likely that not all elements in a system can be labeled based on AR-
TISAn clues. However, the existing knowledge about a system could be used to
reason additionally about the system. Information obtained from clues can be
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propagated from labeled elements to their neighboring elements (both labeled
and unlabeled) when certain conditions are satisfied.

For example, as a result of an application of a communication clue, the ANTS
DataOutputStream class is labeled as C, while no clue could be applied to the In-
strumentation class (5). However, vital to the understanding of Instrumentation
is its relationship to DataOutputStream. This relationship is a UML association
and it indicates that Instrumentation uses DataOutputStream. Based on this ob-
servation we can deduce that Instrumentation cannot be a data element because
a data element, by its definition, is not capable of such processing (i.e., a data
element is perhaps allowed to do minor processing such as data checking, con-
version, and storage, but not application-wide communication). Furthermore,
Instrumentation is not an off-the-shelf communication element because we do
not expect two such elements in a domain-independent system, such as ANTS,
to be able to integrate and call each other directly. Thus, it follows that Instru-
mentation must be a processing element.2

We refer to this kind of reasoning as clue propagation. Clue propagation serves
as a basis for the ARTISAn propagation rules. The pluggable set of propagation
rules and the result obtained during the initial labeling phase provide input to
the propagation labeling step (Figure 2). During this phase, some non-labeled
elements become labeled, based on the application of the propagation rules.
Propagation rules are derived from structural and interaction patterns involving
different types of elements. Figure 6 illustrates these patterns.

The left-hand side of Figure 6 shows that a processing (P) element could call
other processing, communication (C), and data (D) elements. In other words,
there are no restrictions on what type of elements might be called by a pro-
cessing element. On the other hand, our experience has shown that in case of
domain-independent applications off-the-shelf communication elements usually

2 This discussion is based on the understanding that there are no application-specific
communication elements in the ANTS system. If there are, then they would be
recognized as processing elements using ARTISAn’s existing clues.
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do not invoke any other element (e.g., socket-based communication) but if they
do, the invoked elements could only be processing elements (e.g., COM-based
communication element). We should note here that some technologies that are
used to bridge across different computing platforms (e.g., the Java to COM
bridge) may involve communication elements calling other communication ele-
ments. However, in those cases we would be dealing with specialized solutions
that would allow us to recognize such situations on a case-by-case basis. Fur-
thermore, these cases would be amenable to capture by specialized domain- or
application-specific propagation clues and rules, which would result in an ap-
propriate identification and labeling of all such elements. Finally, data elements
are expected to be passive entities that may perform some rudimentary internal
processing, but are otherwise not interacting with processing or communication
elements. To describe the propagation rules in a more formal way, we will use
the right-hand side of Figure 6, which is a transpose of its left-hand side (e.g.,
only P or C can call P).

Based on the caller-callee relationships in Figure 6, we can deduce six prop-
agation rules, which are depicted in Figure 7. For example, rule 1 in Figure 7
states that if an element is known to be a processing element (denoted by +P
in the middle box), then all elements that call it (its callers) cannot be data el-
ements (denoted by D). The rationale for this is as follows: from the right-hand
side of Figure 6 we know that either a P or a C can call another P. This implies
that the caller cannot be D. Since we do not know whether the actual caller is
P or C, we only write that it is not D. In this way we avoid having to make
an early (but possibly incorrect) decision. The question mark in the right-hand
column of rule 1 indicates that we cannot say anything about the elements being
called by that element (its callees). Similarly, if an element is known not to be
a processing element (-P), as in rule 4, then neither the caller nor the elements
being called can be communication elements. This rule is again derivable from
Figure 6. If an element is not P then it is either C or D. We know that C can
be called only by P, and that D can be called by P or D. It follows that C or D
can be called by at most the union of their callers, which is P or D. Since we do
not know whether it is P or D, we simply write that it is not C. All other rules
can be derived in a similar way.

As a result of the propagation labeling step, two additional classes in the
ANTS Visualizer were recognized as processing elements: Instrumentation and
CPAPI.

The algorithm for applying propagation rules is based on the changes in the
inclusion and the exclusion sets for each of the system’s elements. All elements
are being processed, and as long as there are changes in any of the two sets
(e.g., an unlabeled element becomes labeled, or a processing element becomes
classified as non-connecting element), an appropriate propagation rule is run.
Since the inclusion and exclusion sets for each element are finite, it is obvious
that this algorithm terminates. Its running time is linear, because no decisions
are ever undone (no backtracking).
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This step also provides support for identifying any potential rule conflicts. For
example, if a class is identified as a processing element through one propagation
rule, but also as not a processing element using another rule, then either the clue
or one of propagation rules was erroneous. Conflicts are easily identifiable due to
their simple implementation representation (+P and -P) and ARTISAn reports
all inconsistencies to the user. At that point, the user has the choice to manually
label the elements if they are of a known type, ignore the discovered conflict
(e.g., in case when a helper class of known functionality has conflicting labels),
or use that information to modify the set of clues, and rerun the propagation
labeling step. In the last case, both the user and the tool are “learning” about
new clues that could be used for other systems.

3.3 Def-Use Analysis

The next step in our approach is the identification of regions, i.e., groups of
system elements that are closely related, or independent of other parts of the
system. To this end, we adapt def-use analysis. Def-use analysis is an approach
that has already been used in literature and illustrates the use of dominance
analysis for identification of regions of related modules [8, 10]. These regions
indicate parts of a system that are exclusively used by its other part(s) and
those that are shared. Each of the identified regions has an entry point, which is
a module where processing starts (e.g., a class with the main() method). Entry
points in ARTISAn are obtained from the initial labeling step (Figure 2). Those
are all elements that satisfy the “main” clue, but also include elements that are
able to create a new processing thread. The rationale for this lies in the fact
that systems often spawn their own subsystems by creating separate processing
threads. We can identify spawning using clues which were discussed previously.

In addition, ARTISAn supports a richer set of relationships among elements
by analyzing class inheritance together with class association and dependency
relationships. For example, the Tracker class inherits from the Device class,
which makes the Tracker able to invoke the methods of the Device. Furthermore,
if there is a class that declares a variable of type Device, that variable is then
able to hold either an instance of Device or any of its subclasses (e.g., Tracker).
This means that the variable holder class can invoke any of subclasses’ methods,
which is interpreted in ARTISAn as another type of calling relationship.

The information about regions enables an engineer to more easily recognize
system elements that belong together. The usage view thus complements the
purpose view by combining information about high-level functionality of indi-
vidual elements with information about regions of related elements.3

3.4 Intervention of a Knowledgeable User

Since program understanding is an activity that inherently involves humans, it
is vital for a tool such as ARTISAn to provide support for user intervention. AR-

3 The example is omitted due to space limitation and can be found in [5].
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TISAn is built with the premise that the information about the system provided
by the user can be used by the tool to provide a richer set of results.

For example, in the case of the ANTS Visualizer system, the labeling phases
were unable to classify the classes Tracker, Target, Sensor, Scenario, and Device.
The result of a def-use analysis shows that these classes form a region, but the
purpose of this entire region is still unknown (Figure 5). Yet, if a user knows
that Device is a data class then she may provide this information to the AR-
TISAn tool. This information is then instantly propagated to other elements of
the system that have a relationship with the Device class, which results in all
subclasses of the Device class (Tracker, Target, Sensor) being labeled as data
classes. Furthermore, since the Scenario invokes data elements, we know that it
cannot be a communication element (because its exclusion set contains C).

Moreover, the users have an opportunity to add/remove clues, and update
the elements’ labels (both inclusion and exclusion sets) as well as information
about entry points. All the changes are performed immediately, i.e., the tool
does not expect the user to restart and repeat the whole analysis. In addition,
changes can be undone to further support “what if” scenarios.

4 Evaluation

This section evaluates our approach by discussing our tool’s ability to label all
the classes in a system (recall rate) and do so correctly (precision rate).

Table 2 lists a representative subset of several case studies (applications) that
we have used to evaluate the approach to date. The meaning of each column
header and value is described throughout the section. Since our tool currently
supports the object-oriented paradigm, we chose to analyze various Java ap-
plications that span different domains, including middleware, such as MobiKit,
which is built on top of Siena [15]. The first two case studies listed in the table
have already been described in the paper. The Jigsaw web server was built by
a third party and is available as open source. In all cases we either used the
existing design model, if it was available, or reverse engineered its class diagram
from the implemented system.

Table 2. Evaluation results

Case study Classes
Initial labeling Propagation labeling

Initial recall
rate

FP Total
recall rate

Total
FP

Inconsistencies

Visualizer 37 75% 0 81% 0 0
ANTS 211 67% 0 69% 0 0
DeSi 64 68% 0 93% 0 0
TimeWeaver 120 55% 4 60% 4 0
MobiKit 34 32% 3 58% 3 0
Jigsaw 1009 25% ? 47% ? 4
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There are two columns in the table that show the measure of completeness of
our approach, one for each of the two labeling steps (initial and total recall rate).
The values in these columns range from 25% (initial labeling in the Jigsaw case
study) to more than 90% (after the propagation labeling in DeSi case study).

To validate the correctness of labeled classes we looked at the number of false
positives produced (denoted by FP in the table), for each of the two steps. All
system classes being labeled incorrectly are considered to be false positives. As a
reference set to which we compared the ARTISAn-generated labels, we used the
labels obtained from the programming environment’s chief developer (in case
such a person was available), or the results obtained by conducting a survey. We
created a collection of over 50 randomly chosen Java source code classes from
4 of the case studies, and asked 20 graduate-level computer science students
who are proficient in Java to manually inspect and label the classes into the
four categories: P, D, C, and “don’t know”. Each of the classes had 12 votes on
average and we found that our tool produced a low number of false positives (0
to 4), and that their number did not increase from one labeling step to another.
ARTISAn correctly labeled 72% of classes that were given to students. We also
asked the students to provide a rationale for their decisions. We noticed that
the classes for which the students’ answers were unanimous and which our tool
was unable to label were predominately application-specific processing classes.
For example, the classes identified by the students as processing elements had
implemented complex algorithms internally, or had mnemonic names (including
method names), which all served as a rationale for classifying them. This type
of information is currently outside ARTISAn’s scope, but can be embedded in
additional (domain- or application-specific) clues and rules.

The propagation labeling phase added a significant advantage to labeling
as the total recall rate rose to an average of 68% compared to 53% of initial
labeling. To validate the set of propagation rules, we compared the ARTISAn’s
results to the students’ responses and also observed the number of inconsistencies
discovered by the tool after the propagation-labeling step (the last column in the
table). Our results showed that, except in one case, there were no inconsistencies
in any of the conducted case studies.

While we believe that these results are already encouraging, we found that
several of the identified problems could be avoided to a large degree through bet-
ter reverse engineering. We relied on the off-the-shelf IBM Rational Rose tool
for analyzing the source code, but found early on that it did not discover all
class relationships well. Therefore, in some cases we had to manually investigate
the code to add missing relationships, which is a labor-intensive and error-prone
activity. We also found that Rose did not distinguish between class invocations
and class references. This caused inconsistencies in Jigsaw where variable refer-
ences and calling references did not always coincide. Finally, we found that Rose
did not capture calling relationships among methods that belong to different
classes. This was a problem whenever a class was identified as, say, both a pro-
cessing and a data element, i.e., in cases when some of its methods indicated it
to be a processing and other methods a data element. This problem then led to
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inconsistencies within the “data is not allowed to call processing” rule since our
tool could not distinguish whether the processing methods of the class invoked
the other class or the invocations originated from the data methods.

It should also be noted that we only used a set of domain-independent clues
(Table 1) in our case studies. This is because we wanted to use only the clues
that are applicable to all case studies and keep their number as small as prac-
tical. We found that we could have improved the total recall measure if we had
extended our set of clues with other domain- or application-specific clues, such
as those based on the use of middleware solutions and naming convention. For
example, this way the jigsaw.Resource or Siena.Notification classes (and all their
subclasses) could be recognized as data elements. However, since we were not
involved in the development of, nor are we intimately familiar with, any of the
mentioned domain-specific case studies, we decided to present results obtained
only from using the domain-independent clues.

5 Related Work

Among the numerous program understanding techniques that have been pro-
posed in the literature (i.e., inspection, visualization [6, 7], reading), our work is
mostly related to those that achieve the goal of better program understanding
and visualization through various architecture recovery methods. This section
focuses on this area.

X-ray [10] is an exploratory reverse engineering approach which aids pro-
grammers in recovering architectural runtime information from existing software
artifacts of a distributed system. Similarly to ARTISAn’s notion of clues, X-ray
allows the definition of syntactic program patterns, and an associated pattern-
matching mechanism. Although the search of program patterns in X-ray would
result in the recognition of a more abstract program feature, there is an obvi-
ous trade-off in terms of the generality of the approach, the richness of its set
of rules, precision, and hit rate. For example, unlike ARTISAn, an interaction
mechanism in the form of shared data might not be able to be recognized by
X-ray. Furthermore, the lower abstraction level of clues in ARTISAn resulted
in its inherent support for “what if” scenarios. The main similarity between
ARTISAn and X-ray is in the recognition of program entry points, followed by
the application of the study of the dominance relation (usage or reachability
analysis), which is well-known and has been used elsewhere in the literature [8].

Similarly to ARTISAn, Lanza and Ducasse [7] propose a categorization of
classes, based on class blueprints, as a way to visualize the internal structure of
classes. All methods and attributes are distributed among five layers (initializa-
tion, interface, implementation, accessor, and attribute) and categorized based
on their blueprints. However, this categorization does not try to understand the
functionality of a class, but just its static structure.

ManSART [4, 17] is a Software Architecture Recovery Tool that uses special
query language routines, called recognizers, to extract and analyze style infor-
mation from an abstract syntax tree representation of the source code. Similarly
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to ARTISAn, the result is given as a collection of different architectural views.
Architectural representation in ManSART is obtained by manipulating and com-
bining (e.g., merging) different views or, like in ARTISAn, by finding connected
subsets of a view.

ACT [1] is an architecture recovery method that combines clustering with
pattern-based techniques. Similarly to ARTISAn, it proposes the use of architec-
tural clues that serve as footprints of the high-level design of a system. However,
the clues in ACT are small structural patterns (e.g., Façade) that refer to archi-
tectural patterns (e.g., Client-Server), which makes them less frequently present
and more difficult to recognize, mainly because of their higher complexity and
granularity.

Rigi [14] is a program-understanding tool that provides support for the dis-
covery and hierarchical representation of subsystems. Subsystem composition,
based on artifacts that are extracted and then stored in an underlying repository,
depends on the purpose, audience, and domain [11]. For program understand-
ing purposes, the approach uses low coupling and strong cohesion; alternatively,
components can be identified by maintenance personnel based on their experi-
ence or qualifications. Unlike ARTISAn, the composition criterion depends on
the application that is being re-documented. The use of domain knowledge is
unavoidable and the recovery is usually done by persons who are familiar with
the application (e.g., its developers).

DiscoTect [16] is a technique for solving the problem of dynamic architectural
recovery by mapping low-level implementation style constructs to more abstract
architectural operations when predefined run time patterns are recognized. How-
ever, the patterns used for search, unlike in ARTISAn, are often very specific,
and depend on the application or the environment under inspection.

6 Conclusion and Future Work

This paper discussed ARTISAn, an exploratory and tailorable framework that
helps in program understanding tasks. The framework comprises replaceable
components to accommodate the exact programming environment and supports
developers in understanding large-scale, multi-language source code. The ap-
proach is twofold: it provides both a high-level functionality view (i.e., purpose)
and a usage view of system elements. In tandem, these views provide the user
with a better understanding of the system, and an opportunity to faster locate
the parts that are of particular interest (e.g., for maintenance purposes). The
first two steps of our approach are evaluated by providing the analysis of the
tool’s results obtained from several case studies. To evaluate the def-use anal-
ysis step, or the correctness of the resulting set of rules, more formal methods
are needed. For example, the former can be achieved by comparing the usage
view with results of other similar approaches). Finally, determining the overall
correctness of the approach requires a deep understanding of the functionality
and behavior implemented by each element of a system, which is beyond the
capabilities of a light-weight approach, such as ARTISAn.
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There are numerous ways to improve our technique. Some of them include
the use of reliability metrics that would depend on the reliability of each of the
clues and rules applied, and then be used to (automatically) resolve any of pos-
sible inconsistencies that result from the labeling process. The other direction of
improvement is in providing a richer set of domain- and application-independent
clues. For example, the fact that delegating classes act as facades or wrappers
to other classes, might turn up to be useful in recognizing communication-
processing relationships. Furthermore, the presented rule set can be extended by
additional rules that support subcategories of the three major element groups
(P, C, and D), such as GUI (P) and interruptible communication (C) type ele-
ments. Such a richer propagation rule set would lead to a better understanding
of the purpose of a system’s elements.

References

1. M. Bauer and M. Trifu, “Architecture-Aware Adaptive Clustering of OO Systems,”
in Proc. of the Eighth European Conference on Software Maintenance and Reengi-
neering (CSMR 2004), Tampere, Finland, March 24-26, 2004

2. A. Egyed, “Compositional and Relational Reasoning During Class Abstraction,” In
Proceedings of the 6 th International Conf. on the UML, Oct. 2003, San Francisco.

3. A. Egyed, B. Horling, R. Becker, and R. Balzer, “Visualization and Debugging
Tools,” Distributed Sensor Networks: A multiagent perspective, pp. 33 - 41, editors:
Victor Lesser, Charles Ortiz, and Milind Tambe, Kluwer Academic Publishers, 2003

4. D. R. Harris, A. S. Yeh, and H. B. Reubenstein, “Extracting Architectural Features
from Source Code,” In Automated Software Engineering 3, 1996, pp. 109-138.

5. V. Jakobac, A. Egyed, and N. Medvidovic, “ARTISAn: An Approach and Tool for
Improving Software System Understanding via Interactive, Tailorable Source Code
Analysis”, TR USC-CSE-2004-513, December 2004, USC, USA

6. D.F. Jerding and S. Rugaber, ”Using Visualization for Architectural Localization
and Extraction,” In Proc. of the Fourth WCRE, pp. 56-65, Oct. 1997

7. M. Lanza and S. Ducasse, “A Categorization of Classes based on the Visualization
of their Internal Structure: the Class Blueprint,” In Proceedings of the 2001 ACM
OOPSLA, October 14-18, 2001, Tampa, Florida, USA

8. T. Lengauer and R. E. Tarjan, “A Fast Algorithm for Finding Dominators in a
Flowgraph,” ACM Trans. on Programming Languages and Systems, Vol. 1, No. 1,
pp. 121-141, July 1979

9. N. Medvidovic and V. Jakobac, ”Using Software Evolution to Focus Architectural
Recovery,” In J. of Automated Software Engineering, To appear. 2005

10. N. Mendonca and J. Kramer, “An Approach for Recovering Distributed System
Architectures,” In J. of Automated Software Engineering, vol. 8, pp. 311-354, 2001

11. H. A. Müller, K. Wong, and S. R. Tilley “Understanding Software Systems Using
Reverse Engineering Technology,” In The 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences Proceedings (ACFAS), 1994

12. E. Perry and A. L. Wolf, “Foundations for the Study of Software Architecture,“
ACM SIGSOFT SOFTWARE ENGINEERING NOTES, vol 17 no 4 Oct 1992

13. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging
Discipline“ Prentice-Hall, 1996



268 V. Jakobac, A. Egyed, and N. Medvidovic

14. K. Wong, S. Tilley, H. A. Müller, and M. D. Storey, “Structural Redocumentation:
A Case Study,” IEEE Software, Jan. 1995, pp. 46-54.

15. Siena: A Wide-Area Event Notification Service, http://serl.cs.colorado.edu/
∼carzanig/siena/

16. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “DiscoTect: A System
for Discovering Architectures from Running Systems,” In Proc. Intl’l Conf. Soft.
Eng., Edinburgh, Scotland, United Kingdom, May 23-28, 2004

17. S. Yeh, D. R. Harris, and M. P. Chase, “Manipulating Recovered Architecture
Views,” In Proc. Intl’l Conf. Soft. Eng.,May 17-23, 1997 Boston, pp. 184-194.



Kaveri: Delivering the Indus Java Program
Slicer to Eclipse�

Ganeshan Jayaraman, Venkatesh Prasad Ranganath, and John Hatcliff

Department of Computing and Information Sciences,
Kansas State University,

234 Nichols Hall, Manhattan KS, 66506, USA
{ganeshan, rvprasad, hatcliff}@cis.ksu.edu

Abstract. This tool paper describes a modular program slicer for Java built using
the Indus program analysis framework along with it’s Eclipse-based user interface
called Kaveri. Indus provides a library of classes that enables users to quickly as-
semble a highly customized non-system dependence graph based inter-procedural
program slicer capable of slicing concurrent Java programs. Kaveri is an Eclipse
plugin that relies on the above library to deliver program slicing to the eclipse
platform. Apart from the basic feature for generating program slices from within
eclipse along with an intuitive UI to view the slice, the plugin also provides the
capability for chasing various dependences in the application to understand the
slice.

1 Introduction

Program slicing is a well known analysis that can be used to identify parts of the program
that influence or are influenced by a given set of program points (slice criteria). There
have been a large number of publications along with a small number of implementations
for languages such as FORTRAN, ANSI C, and Oberon. 1 Most of the implementations
have been targeted to particular applications of program slicing such as program com-
prehension, testing, program verification, etc. Moreover, only few robust slicing tools
exist for languages like Java and C++.

From our experience we have found that the properties required of a slice depend on
the application. For example, the program slice needs to be executable for program ver-
ification applications such as Bandera[2] but not for program comprehension purposes.
Similarly, the slice needs to be “residualizable” for some applications and such trans-
formations can again be constrained by the application. Hence, program slicers need to
be modular and flexible (customizable) as opposed to being monolithic and rigid.
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1 Please refer to Jens Krinke’s Dissertation[1] for a brief informative overview of available
implementations.
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Fig. 1. Bird’s eye view of classes and artifacts in Indus Java Program Slicing Library

2 Indus Java Program Slicer

Drawing from the our experience with Bandera slicer, we have implemented a program
slicing library that can handle almost full Java2. To the best of our knowledge, this is the
first publicly available Java implementation of a program slicer for Java.

Indus modules work on Jimple (SOOT [3]) representation of Java programs and
bytecode.

The key features of Indus Java Program Slicing library apart from generating back-
ward and forward slices are as follows.

Batteries Included. The program slicing library, directly or indirectly, requires various
high level analyses such as escape analysis [4], monitor analysis, safe-lock analysis [5],
and analyses to calculate and prune various dependences – intra- and inter-procedural
data dependence, control [6] dependence, interference [7] dependence, ready depen-
dence and synchronization dependence [5]. These high level analyses rely on low-level
information such as object-flow information [8], call graph, and thread graph [4]. All of
the above analyses and other related analyses are available in Indus.

Modularity. Most of the above mentioned analyses are available as independent mod-
ules. Hence, the user can use only the required analyses. Each analysis implementation
is decoupled from it’s interface to enable easy experimentation with various implemen-
tations. This is a recurring theme in Indus which is leveraged in the slicer.

Non-SDG Based. Most slicing related work is based on program/system dependence
graphs (PDG/SDG) that contain dependence edges to account for various aspects of
the language such as unconditional jumps, procedure calls, aliasing, etc. This can be an
obstacle for reusability. Instead, in Indus, the logic to handle such aspects is encoded

2 With the exception of dynamic class loading, reflection, and native methods.



Kaveri: Delivering the Indus Java Program Slicer to Eclipse 271

in the slicing algorithm to decrease coupling and increase cohesion. As a result, depen-
dence information is readily reusable, fine-tuning of slicing algorithm is simplified, and
maintenance becomes easy.

Program Slicing = Analysis. In Indus, program slicing is considered to be pure program
analysis – program slicing only calculates the program points that belong to a slice. This
simplifies the slicing algorithm and enables the same slicing algorithm to be used with
different transformations as required by the applications.

Inter-Procedural and Context-Sensitive. The slicer considers calling contexts (where
possible) to generate precise inter-procedural slices. The user can generate context-
sensitive slice criteria to further improve precision. Scoping, a feature that can be used
to control the parts of the system that need to be analyzed, can be used to to restrict the
scope of slicing to a single method, a collection of methods, a collection of methods
belonging to a collection of classes, etc.

Concurrent Programs. This implementation can slice concurrent programs by con-
sidering data interference and other synchronization related aspects that are inherent to
concurrent programs. Information from escape analysis and monitor analysis is used to
improve the precision of concurrent program slices.

Highly Customizable. Using Indus libraries, the user can assemble a slicer that is
customized for the end-application. For example, the user may choose cloning based
residualization for differencing purposes or destructive-update based residualization for
program verification purposes.

To verify that our library is indeed customizable to multiple application domains and
also to realize a long term goal of having an UI to visualize program slices, we developed
Kaveri.

3 Kaveri: A Program Slicing Plugin for Eclipse

Kaveri is a plugin that contributes program slicing as a feature to Eclipse [9]. Kaveri
utilizes the Indus program slicing library to perform slicing, thereby, hiding the details of
assembling a slicer customized for the purpose of program comprehension.As a program
comprehension aid, Kaveri contributes the following features to Eclipse.

Slice Java Programs by Choosing Slice Criteria. The user can pick the criteria, gen-
erate the program slice, and view the slice all using the Java source editor. The plugin
handles the intricacies such as mapping from Java to Jimple and driving the slicer.

View the Slice in the Java Editor. The part of the source code included in the slice is
highlighted in the editor. This aids slice-based program comprehension.

PerformAdditive Slicing. “What program points are common to slices based on criteria
b and c?” is a common question during program comprehension. It can be answered by
intersecting the slices based on criteria b and c. In Kaveri, the user can achieve this by
associating different highlighting schemes to slices based on b and c, and viewing both
the slices in the editor at the same time. Similarly, Chops can be realised by intersecting
backward and forward slices.
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Support for Program Comprehension. Understanding dependence relations between
various program points helps understand the generated program slice. In Kaveri, this is
achieved by “chasing” dependences.

– The user can view which program points in a Java statement/expression are included
in the slice via slice comprehension view, an eclipse view displays the Java-to-Jimple
mapping for a Java statement/expression along with Jimple level slice annotations.

– As Kaveri annotates the parts of the source file in the editor, the user can use the
built-in annotation navigation facility in Eclipse to keep track of dependence navi-
gation. However, to compensate for the genericity of this facility, Kaveri maintains
the dependence-based path taken by the user. The user can navigate this path and
backtrack on it via a dependence history view.

– Kaveri also supports path queries that can be used to find sequences of program
points that are related via a pattern of dependences and other relations specified by
a language such as regular expressions.

The user can also generate a scoped slice based on scope specifications to understand
the relation between certain program points independent of external influences.

Perform Context-Sensitive Slicing. In Kaveri, the user can identify calling contexts
(from a inverted call tree of a finite depth) to be used in the generation of context-
sensitive program slices.

We have successfully used Kaveri with code bases of≤ 10K lines of Java application
code (< 80K bytecodes) (excluding library code). All software and related artifacts
pertaining to Indus and Kaveri are available at [10].
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Abstract. MSC is a visual formalism for specifying the behavior of
systems. To obtain implementations for individual processes, the MSC
choice construction poses fundamental problems. The best-studied cause
is non-local choice, which e.g. is unavoidable in systems with autonomous
processes. In this paper we characterize two additional problematic classes
of choice nodes. Based on these three classes we point out some errors in
related work. Extending our work on pragmatic implementations of non-
local choice, we motivate a different choice semantics which allows a little
more behavior. Finally, inspired by practical case studies, we present the
first implementation approach for non-local choice nodes that can handle
arbitrary numbers of processes.

1 Introduction

Message sequence chart (MSC, see [11, 17]) is a visual formalism that is used
to specify the behavior of a collection of processes. An important property of
MSCs is that behaviors are described from a full-system’s perspective. Then an
immediate question is whether an implementation can be extracted that has the
same behavior but expressed in terms of the processes in the system.

To obtain such an implementation, the behavior specified for the full system
must be established by the independent processes in a distributed way. The
usual way to obtain an implementation for each process is to project the MSC
on each single process. However, in general, implementations with exactly the
same behavior do not exist (see e.g. [13]). Typical problems that arise in naive
implementation attempts are additional behaviors [19] and deadlocks [20].

Then one can conclude that the MSC formalism is inappropriate for protocol
specification, but there are also some approaches to really address the problem.
First, the obtained implementations can be compared with their specifications to
find inconsistencies [20]. A second option is to identify and detect properties of
MSCs that may cause problematic implementations, and then label such MSCs
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as being pathological [7]. Finally, alternative semantics of the MSC constructions
are studied such that these constructions become implementable [5, 15].

In this paper we address the latter two approaches for the very topical issue
of choice nodes. The best-studied property leading to implementation problems
is non-local choice. In addition to this property about locality of a choice, we
define two classes of problems related to propagation of the choice. These three
classes together arise naturally from a single process’ perspective, and we use
them to point out some errors in related work.

To handle non-local choice we motivate a different kind of choice semantics,
viz. one that allows a little more behavior than the standardized semantics, but
in a controlled way. Based on this modified semantics we address approaches
to implement choice nodes. Such approaches are highly needed, since non-local
choice is inevitable in MSC specifications of systems with autonomous processes.
In our cooperation with protocol standardization committees (see e.g. [15]) we
have noticed that currently there are insufficient applicable solutions.

We present a generalization of our approach [15] to implement non-local
choice in systems with two processes. We also introduce a new implementation
approach for non-local choice that, as far as we know, is the first one that can
deal with arbitrary numbers of processes. The MSC patterns required for both
approaches are inspired by our experience with practical case studies.

Preliminaries. Instead of hMSCs (high-level MSCs or hierarchical MSCs), in this
paper we use the mathematically more convenient notion of a message sequence
graph (MSG). Since these concepts are equally expressive (see [8]) this is a valid
and common strategy. An MSG is a finite directed graph in which each node
is labeled with a bMSC (basic MSC), and there is one initial and one terminal
node. We use the term MSC to refer to an MSG together with its bMSCs.

For simplicity reasons and without loss of generality, we assume the MSG to
be normalized such that if a node has more than one outgoing edge, then the
bMSC associated with the node is an empty bMSC. In this way the choices in
the MSG are made explicit in (choice) nodes without an associated bMSC.

We use the following nomenclature for MSCs. There are four kinds of actions
(or events): an internal action, asynchronously sending a message m (denoted by
!m), receiving a message m (denoted by ?m) and termination. A process is said
to have initiative, if a possible next action for the process is an initiating action
like an internal action, sending a message or termination. Note that finding the
collection of possible next actions of a process might require considering the
entire MSG.

Overview. In Section 2 we give our characterization of three properties that may
cause problems when implementing MSCs with choice nodes, and we discuss
some related literature. In Section 3 we discuss ways to handle the best-known
class, viz. non-local choice. Section 4 contains a summary of our earlier work
[15] on dealing with non-local choice in systems with only two processes, and it
contains a small generalization. This summary also serves as an introduction to
Section 5, in which we present an approach to implement non-local choice for
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an arbitrary number of processes. Finally Section 6 gives some conclusions and
directions for further work.

2 Problematic Choice Node Properties

In this section we present our characterization of three problematic choice node
properties. On this basis we discuss and comment on some related literature,
and in Section 5 we exploit it to isolate one of the classes.

2.1 Characterization of Choice Synchronization Problems

As mentioned before, the core implementation problem is that one collective
choice is specified, while it must be implemented in a distributed way. If in a
choice node all possible initiating actions can be performed by only one of the
processes, this single process can simply perform the system’s decision about the
choice. However, in general it is not sufficient to ensure that one process makes
the decision. It is also important that the processes agree on the decision, so the
decision must be properly propagated to the other processes. So far this has not
really been recognized, and the propagation issue is frequently ignored.

In the remainder of this section, we study the implementation problem for a
single choice node from the perspective of a single process. An important concept
will be the set of successor nodes for the process, i.e. the nodes that contain the
process’ possible first action after the choice node. Note that the definition of
successor node for a process is not restricted to the direct successors of the
choice node. Namely, if the process is not involved in some direct successors in
the graph, also nodes that can be reached further on must be considered.

Non-local Choice. A first question is whether the process should initiate some
behavior or it should just wait to receive a message. When several processes
independently decide to initiate behavior, they might start executing different
successor bMSCs. This possibility easily leads to non-specified behaviors, and it
is usually called non-local choice (NLC). An example of non-local choice can be
generated with the bMSCs in Figure 1 by constructing a choice node from which
only the bMSCs msc base and msc NLC can be chosen.

More formally, a node is a non-local choice node for the two distinct processes
p and q if the following holds: there are two different successor nodes k and l for
process p and q respectively, such that p has initiative in k and q has initiative in

P Q

msc msc_base

X

P Q

msc msc_NLC

P Q

msc msc_NDC

P Q

msc msc_RC

XY
Z

X

Fig. 1. bMSCs to illustrate the classification
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l, and such that each (acyclic) path to node k without any action of p is disjoint
with each (acyclic) path to node l without any action of q.

Non-deterministic Choice. Then assume that there is only one process that
has initiative in the node, and this process performs the system’s decision on
the choice. Suppose in each successor node the first action of the process under
consideration is a receipt, and suppose a matching message arrives. A question
is whether this first receipt is sufficient to derive the decision made about the
choice. In case some of the successor nodes have a common first receipt, then this
is clearly not the case; we call it non-deterministic choice (NDC). An example
of non-deterministic choice can be generated by constructing a choice node from
which only the bMSCs msc base and msc NDC in Figure 1 can be chosen.

More formally, a node is a non-deterministic choice node for a process p if
there are at least two different1 successor nodes for p with the same receipt
action as first action of p.

Race Choice. Absence of non-deterministic choice is not enough for a process
to derive the choice decision on the basis of the first arriving message. Namely, in
case messages arrive in a different order than in which their receipt is specified
in the bMSC (which in itself is not an error, just a property of the underlying
communication system), the process may incorrectly derive which decision has
been made. So the first message receipt in one node, may actually have been
sent according to another node in which the receipt is not the first action of
the recipient; we call it race choice (RC). An example of race choice can be
generated by constructing a choice node from which only the bMSCs msc base
and msc RC in Figure 1 can be chosen.

More formally, a node is a race choice node for a process p if the following
holds: there are two different2 successor nodes k and l for process p such that
p’s first action in k is a receipt of message m and in l it is a receipt of a different
message n, and such that starting with node l a message m may be sent to p
before process p performs any action.

Examples with a combination of these properties NLC, NDC and RC can be
generated with the bMSCs in Figure 1 by constructing a choice node from which
only msc base and the bMSCs for the selected properties can be chosen.

Distinguishing between the two propagation-related properties, viz. non-
deterministic choice and race choice, may look somewhat arbitrary, but it is
based on an essential difference. Intuitively, non-deterministic choice is a static
property of the MSC, while race choice takes into account the dynamics of the
communication network.

Finally it needs to be mentioned that MSCs with some of these properties
are not guaranteed to give implementation problems [16]. For example, in case

1 A successor node that can be reached from the choice node via multiple paths, is
considered only once since we assume paths without actions to be irrelevant.

2 Note that we exclude order problems that are not caused by a choice (e.g. within a
bMSC), which falls under implementability of a single bMSC.
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Fig. 2. Non-local choice without implied behaviors

all potential “additional” behavior has already been included in the MSC, or in
case agreeing on the decision is not really important for the further execution.

2.2 Related Problems and Solutions

In this section we discuss various related issues from the literature and we point
out some errors in related work.

Communication Infrastructure. Especially in small systems, the problems
caused by non-local choice and race choice can be solved by extra assumptions
about the underlying communication system [12, 4]. Typical properties that may
help are communication synchrony, message order preservation, bounded buffer
capacities and confirmed communications. In specific cases, such assumptions on
the underlying system are both valid and useful.

Definitions of Non-local Choice. A frequently referenced paper for the def-
inition of non-local choice is [2]. Although much literature suggests the equiva-
lence of the various definitions in [2], we show that they are inconsistent. The
informal introduction contains the following description:

“When the wait-and-see strategy can be used to resolve a non-determinism
within each process, we call the branching a local branching choice. Oth-
erwise, when explicit synchronization between the processes is necessary
to resolve a non-determinism, we call the branching a non-local branching
choice.”

After introducing a formal semantic definition and a formal syntactic char-
acterization (equal to ours), the following informal explanation of the syntactic
version is given:

“An MSC specification has no non-local branching choice iff at each of
its branching points, the first events in all bMSCs are sent by the same
process.”

Usually, this last version is used for definition purposes, but the first one
is assumed when it comes to implementation. It is easy to see that these two
definitions are different by studying a choice node with the two successor bMSCs
msc base and msc RC from Figure 1. Since process P is the only process that can
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Fig. 3. Hidden non-local choice

initiate an action, it is local according to the second definition. Then according
to the first definition all non-determinism should be resolved, but process Q
shows the contrary.

Implied Scenarios. Implied scenarios are scenarios that are not contained in
the MSC specification, but that are contained in implementations of the MSC.
Although implied scenarios can result from propagation problems, only the rela-
tion with non-local choices (according to the syntactic definition of [2]) has been
studied. In [18] the following two observations are made:

1. “Non-local choices are implied scenarios;”
2. “nevertheless the converse is not the case.”

In contrast, [16] makes the following two observations:

3. “Notice that a non-local choice is not enough to have an implied scenario.”
4. “To have an implied scenarios these conditions3 hold: i) there is a non-local

branching choice in the MSC specification so that ii) ...”

There are two contradictions here. Observation 3 falsifies observation 1, which
can be shown using a choice node with as successors the bMSCs from Figure 2,
where more than one process has initiative but no implied behaviors result. In
turn, observation 2 falsifies observation 4, which can be shown with a choice node
node with the two successor bMSCs msc base and msc RC from Figure 1. Imple-
mentations of this example, without non-local choice, contain implied scenarios
with the prefix !Z · !X · ?X. Another example can be found in [18].

Delayed Choice. The widely accepted solution to non-deterministic choice is
to use delayed choice semantics instead of ordinary choice semantics. Since this
solution is effective quite often (though not always), it has become part of the
MSC standard. Sometimes, it can even eliminate non-local choice by factoring
out a common non-local prefix of the bMSCs after which a local choice remains.

However, we could not find any warning for its possible side-effects. Namely,
delayed choice can also expose non-local choice, e.g. in a choice node with the
two successor bMSCs from Figure 3. So although the MSG itself contains no
non-local choice, after applying delayed choice the non-local choice pops up.

3 This is the basis of [16]’s procedure for detecting implied behavior.
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3 Dealing with Non-local Choice Nodes

In this section we address some ways to deal with the best-known choice problem
from Section 2, viz. non-local choice. We motivate a class of solutions, of which
only some instances have been described so far.

3.1 Traditional Approaches

Non-local choice is usually addressed by syntactically detecting (e.g. [2]) the non-
local choice nodes, or by detecting the resulting implied behaviors by generating
them (e.g. [16]). However, these approaches do not really address how to solve
the problems with non-local choice. An obvious approach might be to change
the MSC into a similar MSC with only local choice nodes. Since in that case at
each node only one process has initiative, systems with autonomous processes
cannot be specified. Another way to overcome the problems resulting from non-
local choice is to explicitly include all implied behaviors in the MSC. Although
this eliminates the implicit additional behaviors caused by implementing non-
local choice nodes, the MSC becomes more complicated, which is definitely not
desired from a practical point of view.

The problems with non-local choice nodes can also be seen as implementation
issues, and hence they should not even be addressed in a specification. Then to
obtain an implementation, some additional coordination protocol needs to be
introduced (e.g. [2]). Although this leads to a nice layered design, it is problem-
atic if some processes represent human beings, on which no additional protocol
should be imposed. Also for protocol standardization this approach is undesired,
since the additional protocol is not part of the MSC description.

3.2 Adjusted Semantics for Choice Nodes

The source of the problems with non-local choice nodes is that the underlying
system is distributed. Since the processes are independent computational units,
a coordination problem arises when the processes together need to make a tran-
sition in the MSG. Nowadays this problem is mainly noted in choice nodes, but
in fact, it also arises for pure (or synchronous) sequential composition of bM-
SCs in an MSG. The latter issue has been solved by defining its semantics to
be weak (or asynchronous) sequential composition, which usually corresponds
to the intentions of the developer of the MSC. For choice nodes, the changes in
their semantics (like delayed choice) are not (yet) sufficient.

Suppose all processes have reached a given non-local choice node. Since the
processes are independent, we need to conclude that in general it cannot be
avoided that the execution of several different bMSCs is initiated. This means
that an implementable semantics of choice must allow, to some degree, parallel
execution of the bMSCs. Of course, the amount of additional parallel behavior
should be minimal, and as soon as possible the behavior should converge to the
behavior of a conventional (or synchronous) choice.

As far as we know, this theoretical motivation for starting with parallelism
and converging to synchronous choice has not been revealed before, but two of
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its instances have been discovered in [5, 15]. These instances mainly differ in
the way in which the additional parallel behaviors are interpreted. In [5] this
behavior is ignored, while in [15] it is stored to be used at the next choice node.
The main limitation of both approaches is that only systems of two processes
can be addressed. In Section 5 we describe the first implementation of such a
semantics for an arbitrary number of processes.

4 Approach from [15] and a Generalization

In this section we summarize the approach for implementing non-local choice
nodes from [15] for two reasons. First, this approach for two processes is a nice
prelude to our approach for multiple processes in Section 5. Second, we show
how the MSG pattern required for [15] can be generalized.

4.1 Pattern and Its Generalization

For application of the approach of [15], the MSC must match a certain pattern
both with respect to its bMSCs and to its MSG. Two special kinds of bMSCs
are distinguished, viz. RC -like bMSCs (Request-Confirm scenario) and A-like
bMSCs (Announce scenario). These bMSCs contain as a prefix the structure as
depicted in Figure 4, in which P and Q denote the names of the two processes.

These two kinds of bMSCs can be seen as negotiation scenarios: process P
can send a Request message to process Q, but Q is the arbiter process that
decides whether to send a Confirm message and continue the execution of the
RC -like bMSC or to send an Announce message and execute an A-like bMSC.
More details are discussed together with the implementation in Section 4.2.

With respect to the MSG, the successor bMSCs of each non-local choice node
M must be partitioned into RC -like bMSCs and A-like bMSCs, but such that
the Request and Confirmation messages in the RC -like bMSCs do not occur in
the A-like bMSCs. The main restriction of [15] is that after an A-like bMSC,
a similar choice node as node M is reached again. This is depicted in Figure 5
(including the dashed arrows): after each A-like bMSC, an S node is reached that
is in fact identical to node M . This MSC pattern turns out to occur frequently.

However, the MSG pattern is too strong, since it only needs to ensure that
when process P has sent a Request message, it still makes sense for process Q

P Q

msc 

P Q

msc 

Confirm

Request

Announce

RC−like A−like

... ...

Fig. 4. Prefixes of the bMSCs for [15]
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Fig. 5. MSG pattern for [15] and a generalization

to receive the message after execution of an A-like bMSC. Hence, after an A-like
bMSC, only node RC is required to be reachable and we propose to generalize
the pattern by eliminating the dashed arrows in Figure 5. After each A-like
bMSC an S node is reached from which at least the previous series of RC -like
bMSCs is reachable (via node RC ). In addition, via the open outgoing edge also
extra RC -like bMSCs and an arbitrary series of A-like bMSCs may be reachable.

4.2 Implementation

We summarize the proposed implementation for both the original pattern (see
[15] for more details) and its generalization at the same time. Process Q becomes
a kind of arbiter, with the usual implementation. However, the implementation
for process P is slightly different: If process P receives an Announce message
from process Q, it executes the corresponding A-like bMSC. Even if process
P sends a Request message of an RC -like bMSC, it may still receive Announce
messages from process Q that indicate that some A-like bMSC must be executed.
Eventually, the Confirmation message corresponding to the Announce message
will arrive, and then execution of the RC -like bMSC can be completed.

Note that in this implementation, between sending and receiving a Request
message several executions of A-like bMSCs are possible. Observe also that after
process P has sent a Request message, the remaining choice is in fact a local
choice, viz. for arbiter process Q.

5 A New Approach to Deal with Non-local Choice Nodes

This section describes a way to implement the semantics proposed in Section 3.2
for systems with an arbitrary number of processes. Like in [15], the additional
parallel behavior is interpreted as behavior that must be stored to be used at the
next choice node. As far as we know, this is the first pragmatic implementation of
non-local choice for an arbitrary number of processes. Furthermore this approach
can deal with bMSCs in which several processes have initiative, and it is inspired
from both examples in the literature and industrial protocol standards.
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The description of our formalization is based on process algebra extended
with two operators. We briefly introduce them using characteristic examples, in
which a and b denote actions and s and t denote terms. The first operator is the
delayed choice operator ∓ (see [1, 17]) with as quantifier Σ:

a · x ∓ b · y =
{

a �= b : a · x + b · y
a = b : a · (x ∓ y)

The second operator is the partial synchronization operator ∩ (see [10, 3])
with a (hidden) set of actions S on which this operator synchronizes:

a · s ∩ b · t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ∈ S ∧ b ∈ S ∧ a = b : a · (s ∩ t)
a ∈ S ∧ b ∈ S ∧ a �= b : δ
a ∈ S ∧ b �∈ S : b · (a · s ∩ t)
a �∈ S ∧ b ∈ S : a · (s ∩ b · t)
a �∈ S ∧ b �∈ S : a · (s ∩ b · t) + b · (a · s ∩ t)

In the remainder of this section, we first introduce a running example. Then
we address the MSC pattern we assume, followed by a description of our proposed
implementation. Finally we relate it to a proposed MSC extension.

5.1 Running Example

As an example to illustrate our approach, we use a simplified version of the
well-known ATM example [20]. We have restricted it to its core non-local choice
problem, as depicted in Figure 6. For later use, the MSCs contain some extra
annotations; in particular the bMSCs have been split by a horizontal line.

We briefly explain the functionality of this simplified ATM. In node A some
repetitive behavior is started with bMSC Request. It consists of inserting a card
and entering a password, followed by verifying the bank account. Then choice
node B is reached, in which the user can choose to:

– interrupt and cancel the account verification, which corresponds to: bMSC
Interrupt1 → node C → bMSC Interrupt2 → node A;

– wait for a balance report and press the cancel button to end the session:
bMSC Response1 → node D → bMSC Response2 → node A.

5.2 Pattern

To keep non-local choice manageable, we isolate it from other problematic choice
properties. This motivates the classification in Section 2, and from now on we
ignore propagation issues. In the remainder of this section, we exploit that the
MSG is normalized as discussed in Section 1 by interpreting the MSG as a graph
in which the edges are labeled with (concatenated) bMSCs, and in which the
nodes indicate choices.

To apply our approach, each bMSC must be split into a (preferably small)
front part that may be executed in parallel, and the remaining tail part that
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Fig. 6. Simplified ATM example

will be part of a real choice. To solve non-local choice, in each node the choice
between the successor bMSCs without their fronts must be a local choice. This
can be achieved as follows:

1. choose a process to become the “arbiter”, which is typically a non-human
process that occurs in each bMSC in an early stage;

2. split the bMSCs into a front and a tail, such that apart from the front, only
the arbiter process has initiative, unless the bMSC can only be reached from
a node with only one outgoing edge. (If the tail is empty for a process, also
successor nodes are involved in deciding which processes have initiative.)

The splitting of the bMSCs must be such that the following conditions hold:

1. for each node and for each two of its outgoing edges e and f with different
fronts, the node reached via edge e is no terminal node and the node has an
outgoing edge with the same front as edge f ;

2. for each two edges e and f with different fronts, the events in the front of
edge e do not occur in the front of edge f ;

3. for each two edges e and f , the events in the front of edge e do not occur in
the tail of edge e nor in the tail of edge f .
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The first condition reflects that additional front behaviors, which are the
additional parallel behaviors, can indeed be used in next choice nodes. If it does
not hold, a wrong arbiter process might have been chosen. But more likely the
MSC lacks some unavoidable behavior, parts of which must be made explicit for
our approach. Thus this condition can constructively help to improve the MSC
without studying the process implementations. A last option is that the MSC
needs to be slightly rearranged to fit our pattern.

The motivation for the last two conditions is quite technical and it will be
discussed upon their use. Although our pattern contains some restrictions, it
includes the patterns of Section 4 and it fits well-known examples as an ATM
(see the running example), and a producer-consumer pair (see Section 5.4).

Let us apply this to our running example. All choices have been made explicit
in the empty choice nodes A, B, C and D, and the only node with more than
one outgoing edge, viz. node B, suffers from non-local choice.

To check the pattern, an arbiter process must be chosen. Using the heuristics
from the first step, the ATM process should be an appropriate arbiter for node A.
The next step is to split the bMSCs according to this arbiter. This is depicted by
horizontal dashed lines in the bMSCs in Figure 6. This way of splitting turns out
to fulfill the first condition, e.g. in node B after bMSC Interrupt1 it is possible
to execute the front of bMSC Response1 namely as front of bMSC Interrupt2.
The last two conditions also turn out to hold.

For reference purposes, we introduce names s0, s1, s2, t0, t1, t2, t′1 and t′2
for the bMSC parts as indicated in Figure 6. For example, for the User process:

s0 = ε s1 = !Cancel s2 = ε
t0 = !CardIn · !Password t1 = ?CancelMsg · ?CardOut t2 = ?BalanceMsg

t′1 = ?CardOut t′2 = ε

5.3 Implementation

In general it is complicated to directly define our proposed implementation in
terms of a finite state machine. It turns out to be easier to use techniques from
constraint-oriented programming (see e.g. [3]), from which for concrete examples
a finite state machine can be obtained using operational semantics (see e.g. [3]).

In the remainder of this section, we concentrate on only one of the processes
since their implementations are independent. Furthermore we use V for the set
of nodes, and E for the set of labeled edges. More specific, we represent each edge
as a four-tuple (v, m, n, w) ∈ E as follows: the edge is directed from node v to
node w, and m and n are the front and the tail respectively of the corresponding
bMSC projected on the process to be implemented.

Our implementation is described in Figure 7, where the smallest solution of
I.v denotes the implementation of node v for the process. It is defined as the
synchronized execution of the terms Ii.v.m for each individual front m, where
Ii.v.m expresses where front m may be executed in relation with all tails. The
partial synchronization operator ∩ only synchronizes on the events in the tails,
for which we exploit the last two conditions mentioned above.
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I.v = (
⋂

m:(∃v,n,w:(v,m,n,w)∈E) Ii.v.m)

Ii.v.m =
{

(∃n,w (v, m, n, w) ∈ E) : Ia.v.m.ε

(∀n,w (v, m, n, w) �∈ E) : (Σm′,n′,w′: (v,m′,n′,w′)∈E n′ · Ii.w
′.m)

Ia.v.m.p =
(

Σm′,n′,w′: (v,m′,n′,w′)∈E

{
m �= m′ : Ia.w′.m.(p · n′)
m = m′ : (p‖m′) · n′ · Ii.w

′.m

)

Fig. 7. Formalization of a single process implementation

The term Ii.v.m describes the implementation in node v with respect to the
inactive front m. If m is the front of a successor bMSC of node v, its execution
can be started and hence it becomes active. Otherwise it remains inactive, and
a usual choice is performed on the tails of the successor bMSCs of node v.

The term Ia.v.m.p describes the implementation in node v with respect to
the active front m. The additional parameter p is used to accumulate the series
of executions of tails since front m’s execution was allowed to start. In case the
tail of a bMSC with front m is executed, then it is required that front m was
executed along the path p to node v, which is expressed by the term (p‖m′).

To illustrate this approach on our ATM example, we first apply it to the
high-level description in terms of s and t. Afterwards, the specific details can
be substituted to obtain the final process implementations. First we give the
instantiations of some of the formulas:

I.A = Ii.A.s0 ∩ Ii.A.s1 ∩ Ii.A.s2
Ii.A.s1 = t0 · Ii.B.s1
Ii.B.s1 = Ia.B.s1.ε
Ia.B.s1.ε = (ε‖s1) · t1 · Ii.C.s1 ∓ Ia.D.s1.(ε · t2)
Ii.C.s1 = t′2 · Ii.A.s1
Ia.D.s1.(ε · t2) = ((ε · t2) ‖ s1) · t′1 · Ii.A.s1

After simplification we obtain the following implementation per process:

I.A = Ii.A.s0 ∩ Ii.A.s1 ∩ Ii.A.s2
Ii.A.s0 = s0 · t0 · (t1 · t′2 ∓ t2 · t′1) · Ii.A.s0
Ii.A.s1 = t0 · (s1 · t1 · t′2 ∓ (t2‖s1) · t′1) · Ii.A.s1
Ii.A.s2 = t0 · ((t1‖s2) · t′2 ∓ s2 · t2 · t′1) · Ii.A.s2

By substituting the actions of the three processes and eliminating the ∩
operator, the following final implementations are obtained:

IUser = !CardIn · !Password · (!Cancel · (?CancelMsg + ?BalanceMsg) +
?BalanceMsg · !Cancel) · ?CardOut · IUser

IATM = ?CardIn · ?Password · !Verify ·
(?Cancel · !CancelMsg · !CardOut · ?Balance +

?Balance · !BalanceMsg · ?Cancel · !CardOut) · IATM

IBank = ?Verify · !Balance · IBank
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Producer Consumer

msc msc_abort

msc_delivermsc_abort

msc msc_deliver

Producer Consumer

abort

deliver

Fig. 8. Producer-consumer example

The implementation for the ATM (which is the arbiter process) and for the
Bank are the usual ones. The possible behavior of the User has been extended,
but it is intuitive in relation to Figure 6. In particular after pressing Cancel,
the user can get a BalanceMsg instead of a CancelMsg. Using the model checker
SPIN [9], we have verified that the normal implementation contains deadlocks,
and that the above implementation is indeed free of deadlocks.

5.4 Relation with Compositional Message Sequence Charts

Our proposed implementation of non-local choice nodes typically contains be-
havior that is difficult to describe efficiently using current MSC. In [6] a syntactic
extension of MSC is proposed called “compositional message sequence chart”.
The example in [14] to illustrate the usefulness of this extension, can also be
generated using our approach and the MSC in Figure 8. Although the version
of [14] gives a more precise specification (i.e. closer to an implementation), our
version is simpler and more intuitive for system specification and still allows a
(unique) implementation using the technique presented in this section.

6 Conclusions and Further Work

We have structured a number of choice node properties that may lead to im-
plementation problems, viz. non-local choice, non-deterministic choice and race
choice. This has resulted in a natural classification of these properties which
covers initiative and propagation problems for choice nodes.

Further work is to address completeness of the classification. It needs to be
studied whether choice nodes without any of these properties can indeed be
implemented without introducing extra deadlocks or implied behaviors.

We have also focused on the best-known problematic property, viz. non-local
choice, which we propose to handle by slightly changing the choice semantics. We
have given the first implementation approach for non-local choice in systems with
an arbitrary number of processes. This is a pure generalization of the current
choice node semantics in the sense that for MSCs without choice problems it
produces the normal implementation.

Further work is to study alternative formalizations of this approach. In par-
ticular the general properties of this approach need to be investigated. It would
be interesting to investigate whether ignoring the additional parallel behavior
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(as in [5]) can be integrated and also whether other initiative and propagation
issues can be addressed.

Acknowledgements. We thank the anonymous referees for the helpful com-
ments.
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Abstract. This work defines several control-flow coverage criteria for
testing the interactions among a set of collaborating objects. The cri-
teria are based on UML sequence diagrams that are reverse-engineered
from the code under test. The sequences of messages in the diagrams are
used to define the coverage goals for the family of criteria, in a manner
that generalizes traditional testing techniques such as branch coverage
and path coverage. We also describe a run-time analysis that gathers
coverage measurements for each criterion. To compare the criteria, we
propose an approach that estimates the testing effort required to sat-
isfy each criterion, using analysis of the complexity of the underlying
sequence diagrams. The criteria were investigated experimentally on a
set of realistic Java components. The results of this study compare dif-
ferent approaches for testing of object interactions and provide insights
for testers and for builders of test coverage tools.

1 Introduction

Object-oriented software presents a variety of new challenges for testing, com-
pared to testing for procedural software [1]. For example, programs contain com-
plex interactions among sets of collaborating objects from different classes. It is
not sufficient to test a class in isolation—testing the interactions between in-
stances of different classes is of critical importance [2, 1, 3]. A variety of tech-
niques can be employed to test different aspects of object interactions. Several
existing approaches for such testing [3, 4, 5, 6, 7] are based on UML interaction di-
agrams. UML defines two kinds of semantically-equivalent interaction diagrams:
sequence diagrams and collaboration diagrams [8, 9]. In this paper we discuss
only sequence diagrams; Figure 1a contains an example of such a diagram.

A sequence diagram shows the messages that are exchanged among several
objects, as well as other control-flow information (e.g., if-then conditions that
guard messages). Such diagrams capture important aspects of object interac-
tions, and can be naturally used to define testing goals that must be achieved
during testing. The testing requirements are related to certain elements of the
diagrams. For example, it may be required to exercise all relationships of the
form “object X send message m to object Y”. More aggressive approaches con-
sider not only individual messages, but also sequences of messages—for example,
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all possible start-to-end message sequences in a diagram. Section 2 discusses in
detail the previous work that proposes such approaches.

With the help of reverse-engineering tools, sequence diagrams can be ex-
tracted from existing code. Design recovery through reverse engineering is nec-
essary during iterative development [10] and for evolving systems in which the
design documents have not been updated to reflect code changes. Commercial
tools already provide some functionality for such reverse engineering, both for
class diagrams and for sequence diagrams. In addition, several static analyses
proposed in the literature have considered various aspects of reverse engineering
of sequence diagrams [11, 12, 13, 14]. Reverse-engineered sequence diagrams are
a natural source of program-based coverage criteria for testing of object inter-
actions. If a reverse-engineering tool is used to construct a sequence diagram,
a coverage tool can use this diagram as a basis for defining and measuring of
coverage metrics during subsequent testing. Such a diagram reflects precisely the
up-to-date state of the code, and therefore can be used for early and frequent
testing.

The first goal of our work is to define a family of coverage criteria for ob-
ject interactions based on reverse-engineered sequence diagrams. The criteria are
generalizations of traditional control-flow criteria such as branch coverage and
path coverage, and are defined in terms of the sequences of messages exchanged
among a set of collaborating objects. Some of these criteria have appeared in
previous work. However, there have been no attempts to define a unifying frame-
work for such criteria and to use it for systematic investigation and comparison
of different techniques for testing of object interactions. The work presented in
this paper defines such a framework. At the center of the proposed approach
is a data structure which we refer to as interprocedural restricted control-flow
graph (IRCFG). This data structure represents in a compact manner the set of
message sequences in a sequence diagram, and can be easily constructed as part
of the reverse engineering of such a diagram. The IRCFG allows us to define
systematically the family of test coverage criteria.

Our second goal is to design a run-time analysis based on the IRCFG. The
run-time analysis observes the behavior of the code while tests are being exe-
cuted, and gathers coverage measurements with respect to each criterion. Au-
tomated coverage measurements are essential for any program-based coverage
criterion, and the run-time analysis is an important complement to the criteria.

The third goal of this work is to perform a comparison of the different criteria.
We aim to obtain an estimate of the effort required to achieve high coverage for
each criterion, and to compare these estimates. For each criterion c, we propose
an approach which determines a lower bound pc on the number of start-to-end
IRCFG paths that guarantee the highest possible coverage for c. If for a given
sequence diagram the value of pc is very high, this indicates that the effort
required to achieve high coverage for c may be prohibitive, and therefore weaker
criteria should be used. Having such estimates provides valuable insights about
the differences between the criteria, which in turn could allow better planning
and management of the testing process.
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The fourth goal of the work is to perform an experimental study that deter-
mines the values of pc for different criteria on a set of realistic software com-
ponents. Our experiments use 18 components from various Java libraries. The
comparison of pc across a diverse set of components provides insights into the
inherent relationships between the different coverage criteria, and into the effort
required to achieve high coverage for these criteria.

2 Testing and Sequence Diagrams

Several testing approaches proposed in the literature consider testing of object
interactions based on sequence diagrams (or the semantically-equivalent collab-
oration diagrams). Binder [3] considers the set of all start-to-end paths in a
sequence diagram, and defines a criterion for choosing a subset of paths to be
covered during testing. The criterion requires coverage that is similar to tra-
ditional branch coverage: each decision outcome within the diagram must be
covered by at least one start-to-end path. For example, if a message is sent un-
der some condition c, the set of test cases should ensure that at least one path
covers the case when c is true, and at least one path covers the case when c
is false. We will refer to this criterion as the all-branches criterion; a precise
definition of this approach is presented later in the paper.

Consider the sequence diagram in Figure 1a. This diagram represents the
set of possible behaviors when message m1 is sent to object a. Conditions c1,
c2, and c3 guard certain messages: for example, m6 is sent to b only if c3 is
true. A start-to-end path in the diagram can be represented by the temporal
sequence of messages that are exchanged between objects. For example, one
such path is (m1,m2,m4,m6,m2,m3,m4). To satisfy the all-branches criterion, testing
must execute enough start-to-end paths to cover all conditional behavior. One
possible set of paths that satisfies this requirement is p1 = (m1, m2, m3, m4, m5),
p2 = (m1, m2, m4, m6, m2, m3, m4), and p3 = (m1, m2, m4, m6, m2, m4, m5).

Other testing approaches consider not only individual messages and their
guarding conditions, but also entire sequences of messages. Jorgensen and Erick-
son [15] consider testing that exercises method-message paths and atomic system
functions. A method-message path is a sequence of events of the form “method
m1 invokes method m2; during this invocation, m2 invokes m3; during this invo-
cation, m3 invokes method m4 . . .”. For example, in Figure 1a, the left-to-right
sequence of messages (m1,m6,m2,m3) corresponds to a message-method path. In
the subsequent discussion, we will use the more common term call chain to refer
to such a sequence. An atomic system function, as defined in [15], is equivalent
to the set of all start-to-end message sequences in a sequence diagram.

Abdurazik and Offutt [4] consider collaboration diagrams created during de-
sign, and define an approach for static checking and testing of the interactions
among the diagram objects. Their technique requires coverage of start-to-end
sequences of messages in the diagrams. Basanieri and Bertolino [16] define a
testing approach that considers all message sequences in a sequence diagram
and applies the category-partition method to choose the appropriate test data
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for exercising these sequences. Fraikin and Leonhardt [6] describe the SeDiTeC
tool for testing based on sequence diagrams. Their approach requires coverage of
all possible sequences of messages in a set of related sequence diagrams. The dia-
grams are augmented with information about expected input and output values
for method invocations, and these values are checked during test execution.

Briand and Labiche [5] consider functional system testing based on use cases
and sequence diagrams (or collaboration diagrams) constructed during object-
oriented analysis. Each scenario within a use case corresponds to a start-to-end
path in the sequence diagram for that use case. They construct a regular ex-
pression that represents all start-to-end message sequences (i.e., all scenarios),
and require coverage of all such sequences during testing. Wu et al. [7] propose
an approach for testing of component-based software which uses UML collab-
oration/sequence diagrams and statecharts. One of the suggested techniques
requires testing of all possible sequences of messages in a collaboration diagram.

3 Criteria for Reverse-Engineered Sequence Diagrams

The testing approaches discussed in the previous section are based on interaction
diagrams that are constructed during analysis or design, before the correspond-
ing implementation code is written. In general, there is no guarantee that design
activities will produce a complete set of diagrams for all interactions in the sys-
tem. An incomplete set of diagrams is a weak basis for comprehensive testing
of object interactions. Another potential problem is that during code construc-
tion, the implementation often diverges from the original design. For example,
in iterative development, tools for reverse engineering of design artifacts from
the code are often necessary to make the design documents consistent with the
actual implementation.

This paper considers sequence diagrams that are constructed automatically
from existing code, using static analyses for reverse engineering [11, 12, 13, 14].
Problems due to incomplete or outdated diagrams can be avoided with the use
of reverse-engineered diagrams. Such diagrams can be constructed automatically
from the latest version of the code, and for all relevant parts of the system.
Furthermore, since the diagrams are created from the code, a coverage tool can
easily determine what kinds of code instrumentation will be necessary in order
to obtain run-time coverage metrics during test execution.

The approaches from Section 2 (with the exception of Binder’s work [3]) have
a common element: the requirement that all message sequences in an interaction
diagram should be covered. This requirement is either used as a stand-alone
coverage criterion, or as part of more general testing goals. When considered
in the context of reverse-engineered sequence diagrams (rather than diagrams
created during analysis or design), the requirement for all-paths coverage raises
concerns similar to the ones from traditional CFG path coverage. Typically, CFG
path coverage is considered to be infeasible in practice due to the potentially
large number of paths. A similar question can be asked for testing of object
interactions: is it practical to require coverage of all start-to-end paths in a
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reverse-engineered sequence diagram? In fact, the reason Binder considers the
weaker all-branches criterion is because, as he states, “the number of paths can
easily reach astronomical numbers” [3].

This section presents a formal definition of three coverage criteria that are
weaker versions of the all-paths criterion; one of them is the all-branches crite-
rion. The criteria provide several options with different tradeoffs between test-
ing effort and test comprehensiveness. Having such options is important in the
presence of resource constraints for the testing process. Depending on these con-
straints, different criteria for systematic testing of object interactions can be
employed. The criteria are generalizations of traditional control-flow-based cri-
teria such as CFG branch coverage and CFG path coverage. We first define the
notion of an interprocedural restricted control-flow graph (IRCFG), which can be
thought of as the equivalent of a CFG for a sequence diagram. Figure 1b shows
the IRCFG for the diagram from Figure 1a. Paths through the IRCFG corre-
spond to sequences of messages in a sequence diagram. The proposed coverage
criteria for object interactions are then defined formally based on the IRCFG.

3.1 Interprocedural Restricted Control-Flow Graph

An IRCFG contains a set of restricted CFGs (RCFGs), together with edges
which connect these RCFGs. Each RCFG corresponds to a particular method
and is similar to the CFG for that method, except that it is restricted to the flow
of control that is relevant to message sending. In Figure 1b, each RCFG is shown
within a rectangular box. For example, the top RCFG in the figure corresponds to
method m1, which is invoked as a result of sending message m1 to object a. A node
in the RCFG for some method m represents a method invocation in the body of
m. For example, the node labeled m2 in the top RCFG in Figure 1b corresponds
to some call to m2 in the body of method m1. In the reverse-engineered diagram
from Figure 1a, this call is represented by the message m2 sent from a to c. The
RCFGs also contain artificial nodes start and end. The start node represents
the moment when the run-time execution enters the method, and the end node
represents the moment when the flow of control returns back to the caller.

RCFG edges, shown with solid arrows in Figure 1b, represent the sequencing
relationships between nodes. In Figure 1a, after the execution enters method m1,
method m2 is invoked. This is represented by the edge (start,m2) in the RCFG
for m1. After this invocation of m2 completes, either m6 is invoked by m1, or m1
completes without invoking m6. These two possibilities are represented by RCFG
edges (m2,m6) and (m2,end) respectively. Sometimes we will refer to RCFG edges
as intraprocedural edges. RCFGs are connected with interprocedural edges, shown
in Figure 1b with dashed arrows. An interprocedural edge connects an RCFG
node n with a start node that corresponds to some method that could be invoked
by n. Note that due to polymorphism, there could be multiple interprocedural
edges coming out of n. The interprocedural edges define a tree in which the
nodes are RCFGs; we will refer to that tree as the RCFG tree.

Clearly, all information in the IRCFG is entirely based on the structure of the
corresponding sequence diagram. Since we consider sequence diagrams that are
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Fig. 1. Sample sequence diagram and the corresponding IRCFG

constructed from existing code using some reverse-engineering static analysis,
it should be straightforward to construct the IRCFG by augmenting the static
analysis. Our implementation (described later) uses this approach: it extends an
existing reverse-engineering analysis to construct the IRCFG.

3.2 Coverage Criteria

The IRCFG introduced in the previous section serves two purposes. First, it al-
lows precise formal definition of coverage criteria for the corresponding sequence
diagram. Second, it is the basis for a run-time analysis that measures the cov-
erage achieved during testing. In this section we focus on the definition of the
criteria; the run-time analysis is outlined in Section 4.

The all-paths criterion, which we will refer to as All-IRCFG-Paths, requires
coverage of the entire set of complete IRCFG paths. Each complete path is a
start-to-end traversal of the IRCFG. An example of such a path is

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)
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Let p be a sequence of RCFG nodes in which the first and the last node are
start and end in the root RCFG, respectively. We will refer to p as a complete
IRCFG path if it has the following property. Consider some node ni in p, and
let R be the enclosing RCFG for ni. If the next node after ni in the sequence p
is node nj , then one of the following must hold:

Case 1. If ni is the start node of R, there must exist an intraprocedural RCFG
edge (ni, nj) in R

Case 2. If ni is not the start or the end node of R, then
– there exists an interprocedural edge (ni, nj), where nj is the start node

of some child of R in the RCFG tree, or
– there are no interprocedural edges starting at ni, and (ni, nj) is an in-

traprocedural edge in R
Case 3. If ni is the end node of R, then the parent of R in the RCFG tree

contains an intraprocedural edge (nk, nj), and there is an interprocedural
edge from nk to the start node of R

The second alternative in Case 2 represents a situation when the body of the
method invoked by ni is not included in the diagram. For example, it is common
to “stop” the reverse-engineered diagrams at library methods; in this case there
is no interprocedural edge coming out of ni.

It is important to note that not all complete IRCFG paths necessarily corre-
spond to feasible run-time executions. Of course, this is a standard issue for any
program-based criterion that uses some abstracted model of the tested code. For
example, in traditional CFG path coverage, some CFG paths may be infeasible
and complete coverage may not be possible. Even though it is impossible to
completely eliminate infeasibility, there is a wide range of effective static analy-
sis techniques that can reduce significantly the degree of infeasibility in program
models such as CFGs and IRCFGs. For example, points-to analyses (e.g., [17])
can produce very precise calling-context-sensitive information about the calling
relationships between methods, and branch correlation analysis (e.g., [18]) can
identify certain classes of infeasible CFG paths. Static analyses for reverse engi-
neering of sequence diagrams can employ such techniques to identify infeasible
subpaths in the diagrams and in their corresponding IRCFGs. The investigation
of this issue is beyond the scope of this paper, and the subsequent discussion
assumes that all IRCFG paths are feasible.

An interesting question is how many complete IRCFG paths exist in a given
IRCFG. Consider the example in Figure 1b. The invocation of m2 from m1 could
lead to four distinct IRCFG subpaths. Similarly, the invocation of m6 from m1
may proceed along four distinct subpaths. Therefore, there are 16 complete IR-
CFG paths in which m1 calls m2 and m6. When we also consider the case in which
m6 is skipped, the total number of paths becomes 20. This example illustrates
one fundamental concern with the All-IRCFG-Paths criterion: the number of
paths could easily grow exponentially.

Next, consider all RCFG paths in an IRCFG. An RCFG path is a sequence
of RCFG nodes within some RCFG R, beginning with the start node of R and
finishing with the end node of R. Each pair of adjacent nodes in the path must
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correspond to an intraprocedural edge in R. For example, for the root RCFG in
Figure 1b, there are two such paths: (start,m2,end) and (start,m2,m6,end). A
complete IRCFG path could cover several RCFG paths. For example, consider
again path

(startm1, m2, startm2, m4, startm4, endm4, m5, startm5, endm5, endm2, endm1)

This complete path covers the following RCFG paths: (startm1, m2, endm1) in
the root RCFG, (startm2, m4, m5, endm2) in the left child of the root, and the
trivial start-end paths in the two leftmost leaves.

The All-RCFG-Paths criterion requires testing to exercise enough complete
IRCFG paths to cover all RCFG paths. In Figure 1b, coverage for this criterion
can be achieved with five (but not fewer) complete IRCFG paths. Coverage of
all RCFG paths is similar to traditional CFG path coverage. Of course, unlike a
CFG, an RCFG represents only a subset of the flow of control within a method
(e.g., conditions that are irrelevant for calls are ignored). Furthermore, the cri-
terion takes into account the calling context of a method. For example, for m2
there are two RCFGs in Figure 1b—corresponding to call chains (m1,m2) and
(m1,m6,m2)—and each start-to-end path in each of the two RCFGs should be
covered.

Another potential source of exponential growth is the fact that the number
of RCFG paths could be exponential in the size of the RCFG. We can eliminate
this source by defining a criterion that requires coverage of all RCFG edges
rather than all RCFG paths. This All-RCFG-Branches criterion is equivalent to
Binder’s approach discussed in Section 2. For our running example, the criterion
can be satisfied with three complete IRCFG paths.

It is possible to define an additional simplification that leads to an even
weaker (and easier to achieve) criterion. Consider the case when the tree contains
several RCFGs for the same method, and each graph is associated with different
calling contexts for the corresponding method. If we require coverage of each
RCFG edge regardless of the calling context, this defines a coverage criterion that
is a simplified version of All-RCFG-Branches. In essence, we consider each unique
RCFG edge regardless of how many times it occurs in the IRCFG, and require
at least one occurrence to be covered by a complete IRCFG path. The new
criterion will be denoted by All-Unique-Branches. For Figure 1b, this criterion
can be satisfied by two complete IRCFG paths—for example,

(startm1, m2, startm2, m3, startm3, endm3, m4, startm4, endm4, m5, startm5,
endm5, endm2, endm1) and (startm1, m2, startm2, m4, startm4, endm4, endm2,
m6, startm6, m2, startm2, m4, startm4, endm4, endm2, endm6, endm1)

The preceding discussion defines four different coverage criteria based on
the IRCFG. Clearly, these criteria form a subsumption hierarchy. (Criterion ci

subsumes criterion cj if complete coverage for ci also achieves complete coverage
for cj .) The criteria were defined under the assumption that each RCFG is
acyclic. If an RCFG contains a cycle, the number of RCFG paths is of course
infinite. Due to space limitations, the handling of this case is discussed in detail
elsewhere [19].
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4 Run-Time Coverage Analysis

This section defines a coverage analysis for All-RCFG-Paths, All-RCFG-Branches,
and All-Unique-Branches. We are in the process of building a coverage tool for
these criteria, and this paper describes the design of the run-time analysis al-
gorithm used in the tool. For brevity, the description outlines the ideas behind
the algorithm without providing an in-depth discussion of all relevant details. At
present we have no plans to implement coverage tracking for All-IRCFG-Paths,
because the experimental results presented later in the paper raise questions
about the practicality of this criterion.

The code instrumentation required to perform the run-time tracking is fairly
straightforward. Immediately before each call site, we insert instrumentation to
identify the method that is about to be invoked. We also insert instrumentation
immediately after each call site, in order to know at run time that the invoca-
tion has just completed. The run-time events triggered by the instrumentation
are used to traverse the IRCFG while the tests are being executed. The anal-
ysis maintains a “current” RCFG node which reflects the current state of the
run-time execution. Immediately before a call site is about to make a call, the
corresponding interprocedural edge in the IRCFG is traversed downwards and
the current node is changed to the start node of the RCFG for the called method.
The execution within the callee method proceeds until the flow of control reaches
the exit of that method. At this point of time, the current node in the coverage
analysis is end in the RCFG for the callee. The return to the caller triggers an
instrumentation event which shows that the call has just completed. As a result,
the current node becomes the corresponding RCFG node in the caller method.

Based on the current RCFG node in the analysis, it is easy to compute cover-
age metrics for All-RCFG-Branches and All-Unique-Branches. To compute path
coverage for All-RCFG-Paths, we use a variation of an approach for intraproce-
dural path profiling proposed by Ball and Larus [20]. Their technique assigns a
unique integer path id to each distinct start-to-end path in a CFG. Instrumenta-
tion at CFG edges is used to update the value of a run-time integer accumulator.
At CFG exit the accumulator contains the id of the executed path. We can use a
similar technique for RCFG path tracking: each RCFG has an associated accu-
mulator, which is initialized every time the flow of control enters the start node
of the graph.

5 Minimum Number of Paths

In this section we define techniques for estimating the testing effort inherent in
each of the four criteria discussed earlier. Given some IRCFG, for each criterion
c we want to compute a lower bound on the number of complete IRCFG paths
whose run-time coverage would guarantee the best possible coverage for c. This
bound is an indication of how many complete IRCFG paths a tester may need
to consider for coverage in order to satisfy c.
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IRCFG Paths. First, what is the total number of complete IRCFG paths in a
given IRCFG? The computation of the number of paths can be done in bottom-
up fashion on the RCFG tree. Starting from the leaves, we can compute the
number of IRCFG subpaths in each subtree. Consider some RCFG R in the tree,
and suppose that we have already computed the number of IRCFG subpaths for
each of the subtrees rooted at R’s children. To compute the number of subpaths
for the subtree rooted at R, we can traverse R in topological sort order. During
the traversal, when we visit an RCFG node n in R, we compute the number
p(n) of all IRCFG subpaths from the start node of R to n. In the beginning of
the traversal, p(startR) = 1 for the start node of R. For each visited node n, we
have

p(n) =
∑

(n′,n)∈R

p(n′)× q(n′)

Here n′ is an intraprocedural predecessor of n and q(n′) =
∑

R′ p(endR′) where
the sum is over all RCFG R′ that are called by n′ (i.e., there is an interprocedural
edge from n′ to the start node of R′). In the case when there are no such R′, let
q(n′) = 1.

In this computation, for each intraprocedural edge (n′, n) in R, we consider
the number of IRCFG subpaths p(n′) from the start of R to n′. For each RCFG
R′ that is called by n′, we examine the value p(endR′) computed earlier for the
end node of R′. There are a total of p(n′)×p(endR′) IRCFG subpaths that start
at the beginning of R, lead to n′, continue downwards into R′, and eventually
return back to n in R. The total number of complete IRCFG paths is the value
p(n) computed for the end node of the root RCFG.

RCFG Branches. To find the minimum number of complete IRCFG paths
that contain all RCFG edges, we define an integer linear programming problem.
Consider some hypothetical set S of complete IRCFG paths. For each RCFG
edge e, let the integer value v(e) ≥ 0 represent the number of times e is covered
by all paths in S (i.e., the edge frequency of e in S). For each call node n in
the IRCFG, we define equation E1:

∑
e∈In(n) v(e) =

∑
e∈Out(n) v(e). Here In(n)

denotes the set of all intraprocedural edges (n′, n), and Out(n) is the set of all
intraprocedural edges (n, n′′). Equation E1 shows that the number of times n is
entered by paths in S is equal to the number of times n is exited.

For each call node n that has outgoing interprocedural edges, we also need
to model the execution of the corresponding children RCFGs. This is done by
equation E2:

∑
e∈In(n) v(e) =

∑
e∈Call(n) v(e). Here Call(n) denotes the set of

all interprocedural edges (n, start) entering the children RCFGs. Equation E2
encodes the fact that the number of times n is covered by S is equal to the number
of times the children graphs are covered by S. We also model the execution
frequencies of the edges coming out of each start node, using equation E3: v(e′) =∑

e∈Out(start) v(e), where e′ is the single interprocedural edge entering start .
For the All-RCFG-Branches criterion, we define a system that combines E1,

E2, and E3 with the following equation: v(e) ≥ 1 for each edge e in each RCFG.
Given this system, we solve a linear programming problem that minimizes the
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objective function
∑

e∈Out(startroot ) v(e), where startroot is the start node of the
root RCFG. This value represents the total number of times the start node is
traversed by S, which is equal to the size of S. Let p∗ be the minimum value for
the objective function, as computed by a linear programming solver. It can be
proven that p∗ is the minimum number of complete IRCFG paths that contain
all RCFG edges.

Unique Branches. When considering unique RCFG edges, E1, E2, and E3
are combined with equation v(e1) + v(e2) + . . . + v(ek) ≥ 1. Here ei are RCFG
edges that are equivalent: they belong to different RCFGs for the same method,
and all of them represent transitions between equivalent pairs of RCFG nodes.
It can be proven that a linear programming problem with the same objective
function as before produces the minimum number of complete IRCFG paths
that contain each unique RCFG edge.

RCFG Paths. Recall that an RCFG path is a start-to-end sequence of
intraprocedural edges inside an RCFG. Let SR denote the set of all such paths
in some RCFG R. For each edge e ∈ R, let w(e) be the number of times e
occurs in SR. Suppose we combine E1, E2, and E3 with the following equation:
v(e) ≥ w(e) for each edge e in each RCFG. Using the same objective function
as before, it can be proven that a linear programming solver will produce the
minimum number of complete IRCFG paths that cover all RCFG paths.

To construct the system, we need to compute w(e). Given an RCFG R, the
values of w(e) for all e ∈ R can be computed in time linear in the size of R. First,
a topological sort order traversal is used to compute the number p′(n) of paths
from the start node of R to any node n ∈ R. Clearly, p′(n) is equal to the sum of
p′(m) for all predecessor edges (m, n) ∈ R. Similarly, using a traversal in reverse
topological sort order, we can compute the number p′′(n) of paths from n to the
end node of R. For an edge e = (ni, nj), the value w(e) = p′(ni)× p′′(nj).

6 Experimental Study

The approach described in this paper was implemented as part of the ongoing
work on the Red tool for reverse engineering of sequence diagrams. The goal
of this tool is to provide high-quality support for reverse engineering of UML
sequence diagrams from Java code and for testing based on such diagrams. The
tool uses several static analyses, including call graph construction [21, 17], call
chain analysis [22], control flow analysis [13], and object naming analysis [14].
IRCFG construction was implemented as a straightforward extension of these
existing analyses. The lower bounds described in Section 5 were computed with
the lp solve linear programming solver (groups.yahoo.com/group/lp solve).

The 18 subject components used in the study are listed in Table 1. The com-
ponents come from a variety of domains and typically represent parts of reusable
libraries. Columns labeled “Methods” show the number of non-abstract methods
in each component. For each component, we considered the set of methods that
would normally be used to access the functionality provided by that component.
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Table 1. Subject components

Component Methods IRCFGs Component Methods IRCFGs
checked 15 3 pushback 20 11
bigdecimal 33 26 vector 38 22
gzip 41 11 boundaries 74 13
io 86 12 zip 118 38
decimal 136 30 date 136 37
calendar 152 60 collator 157 17
message 176 59 math 241 156
jflex 313 93 sql 350 22
mindbright 488 161 bytecode 625 333

root RCFG was for this method). Red uses a parameter k to control the length
of call chains in the reverse-engineered diagrams. Given some k, the number of
messages in call chains is restricted to be at most k—that is, the depth of the
corresponding RCFG tree is at most k, where the depth for the root is 0. We ran
all experiments with the value k = 3. RCFGs were created only for component
methods: if a component method called code external to the component, the cor-
responding RCFG node did not have a child RCFG. This restriction is part of
the design of Red, and it allows a tool user to define a “scope of interest” and to
ignore code that is outside of this scope. Columns “IRCFGs” show the number
of IRCFGs that had non-trivial flow of control: at least one RCFG node had two
or more outgoing edges. The total number of such IRCFGs for all components
was 1104.

For each IRCFG counted in columns “IRCFGs” in Table 1, we determined
the minimum number of complete IRCFG paths for the different criteria, as
described in Section 5. Table 2 shows the distribution of these numbers for the
entire set of 1104 IRCFGs. Each column shows the percentage of IRCFGs for
which the minimum number of complete IRCFG paths was in the corresponding
range. For example, the last column shows the percentage of IRCFGs that had
a minimum number of complete paths greater than 1000.

The results from Table 2 lead to some interesting observations. In a substan-
tial number of cases, the number of complete IRCFG paths is rather large. In
fact, for several IRCFGs this number is very large (e.g., more than a million).
Thus, even for the limited diagram depth of k = 3, and with the limited scope
of the diagrams to component-only code, in many cases the All-IRCFG-Paths
criterion is clearly impossible to achieve in practice. These results confirm exper-
imentally Binder’s intuition [3] that the number of all start-to-end paths may be
too large. The use of less demanding coverage criteria is one way to address this
problem. Our results indicate that the three other criteria require less testing
effort, and therefore are useful alternatives to All-IRCFG-Paths. For example,
for All-Unique-Branches, almost all IRCFGs have a minimum number of paths
that is ≤ 100, and for half of the IRCFGs this number is ≤ 5. The results suggest
that each criterion provides a different tradeoff between testing effort and test

For each such method we constructed an IRCFG starting at the method (i.e., the
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Table 2. Minimum number of IRCFG paths

Criterion 1–5 6–10 11–100 101–1000 >1000
IRCFG-Paths 29.1% 10.3% 16.8% 10.2% 33.6%
RCFG-Paths 40.8% 14.9% 27.4% 2.6% 14.2%
RCFG-Branches 45.5% 19.6% 31.9% 2.9% 0.2%
Unique-Branches 49.9% 22.1% 27.4% 0.5% 0.0%

Table 3. Reduction in the number of paths

Ratio 1 (1, 2] (2, 10] (10, 103] > 103

IRCFG−Paths
RCFG−Paths 35.1% 13.0% 12.7% 20.2% 19.0%
RCFG−Paths

RCFG−Branches 51.3% 26.2% 7.6% 13.2% 1.7%
RCFG−Branches
Unique−Branches 65.6% 23.5% 10.8% 0.2% 0.0%

comprehensiveness, and therefore a tester may benefit from having tool support
for each criterion.

For each IRCFG counted in columns “IRCFGs” in Table 1, we computed the
ratios between the minimum number of paths for different pairs of criteria, as
shown in the first column of Table 3. Each of the remaining columns in that table
shows the percentage of IRCFGs for which the ratio was in the corresponding
range. For example, the last number of the first row in the table shows that for
19% out of the 1104 IRCFGs, the minimum number of complete IRCFG paths
for All-RCFG-Paths is more than 1000 times smaller than the total number of
complete IRCFG paths. The results in Table 3 are an indication of the reduction
of testing effort when replacing a stronger criterion with a weaker one. All pairs of
criteria exhibit substantial degrees of reduction, and the most significant change
is from All-IRCFG-Paths to All-RCFG-Paths.

The results of the study can be summarized as follows. First, there is strong
indication that the number of start-to-end paths in reverse-engineered sequence
diagrams is often quite large, and therefore simpler (and easier to achieve) criteria
should be available as options to testers. Second, the remaining three criteria
appear to be good candidates for such options because they provide different
tradeoffs for testing effort and comprehensiveness.

7 Related Work

As discussed in Section 2, several testing approaches are based on interaction
diagrams that are constructed during analysis or design [3, 15, 4, 16, 6, 5, 7]. Our
work applies similar techniques to diagrams that are constructed automatically
from existing code. We define a spectrum of coverage criteria that could provide
a tester with several options for the targeted test coverage.

The IRCFG used in our approach is based on two popular data structures:
interprocedural CFG [23] and calling context tree [24]. An interprocedural CFG
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contains the CFGs for individual procedures, as well as edges connecting these
CFGs. Unlike an IRCFG, an interprocedural CFG contains nodes for all state-
ments in the procedures, and the edges between the individual CFGs do not
form a tree. In a calling context tree, a node represents a procedure and the
chain from the node to the tree root represents a call chain for that procedure.
Similarly, the RCFGs in our approach form a tree that represents call chains.

Binder’s all-branches approach [3] is based on a flow-graph representation of a
sequence diagram which is similar to an RCFG. The discussion of the approach
is limited to a single method, while our IRCFG combines information about
several methods and their calling relationships. Briand and Labiche [5] represent
an UML activity diagram with a directed graph in which paths correspond to
sequences of use case that are considered for testing. The sequence diagram for
a use case is represented by a regular expressions that captures the possible
sequences of messages in the diagram. In order to automate the construction of
the regular expression, the authors suggest modeling the sequence diagram with
a labeled graph in which labels correspond to messages, similarly to our use of
the RCFGs.

The traversal of the RCFG tree during the run-time analysis is similar to the
dynamic profiling analyses from [24, 22]: in both cases, the sequence of methods
on the run-time call stack is “simulated” by the analysis. The coverage of intra-
RCFG paths uses the efficient techniques for path profiling from [20], with the
appropriate modifications to ignore statements irrelevant to calls. Melski and
Reps [25] present a general approach for interprocedural paths profiling which
may be possible to adapt in order to obtain run-time coverage information for
complete IRCFG paths.

8 Conclusions and Future Work

This work presents a family of control-flow-based coverage criteria for testing
of object interactions in reverse-engineered sequence diagrams, together with a
corresponding run-time coverage analysis. The experimental study highlights the
inherent difficulty of criteria based on sequences of messages (i.e., path coverage).
The study also indicates that less demanding criteria (e.g., based on branch
coverage) may be a more practical choice for testing of object interactions. In
our future work we plan to measure the coverage for these criteria that is achieved
by real-world test suites, and to investigate the test weaknesses exposed by the
different coverage statistics.
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Abstract. We present tool-support for checking the security require-
ments associated with UMLsec stereotypes. A framework supports im-
plementing verification routines, based on XMI output of the diagrams
from UML CASE tools. Advanced users of the UMLsec approach can use
this open-source framework to implement verification routines for the
constraints of self-defined stereotypes. We focus on a verification routine
that automatically verifies sequence diagrams with cryptographic algo-
rithms for security requirements by using automated theorem provers.

The analysis suite for UMLsec [Jür04] models available at [UML04] is illus-
trated in Fig. 1. The developer creates a UML 1.5 model and stores it in the
XMI 1.2 file format (an upgrade to UML 2.0 is in development). Note that some
UML CASE tools do not implement XMI correctly, in which case one might
have to correct the format for example with a script. The file is imported into
the tool’s repository, using the data-binding framework MDR. By using MDR,
the framework can handle all UML constructs for which a translation to XMI
exists in the relevant DTDs released by the OMG. The tool accesses the model
through the JMI interfaces generated by the MDR library. Static checkers parse
the model and verify it directly for static requirements. Dynamic checkers trans-
late the relevant fragments of the UML model into the input language of several
analysis engines (such as model-checkers and automated theorem provers). That
way, the UML models can be analyzed for dynamic requirements, which may be
formulated in temporal logic, or potentially using OCL. The analysis engines are
spawned by the UML suite as external processes. Their results, and possibly a
counter-example in case a problem was found, are delivered back to the error an-
alyzer. For the dynamic checkers, a reference semantics for a simplified fragment
of UML exists in [Jür04], which is however not enforced by the framework but at
the responsibility of the tool developer, as well as achieving semantic consistency
between different tools. The error analyzer uses the information received from
both the static checkers and dynamic checkers to produce a text report for the
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Fig. 1. UML tools suite

developer describing the problems found, and a modified UML model, where the
found errors are visualized and, as far as possible, corrected. There currently
exist various analysis plugins for the UMLsec tool framework, including:

– a tool-binding to the model-checker Spin to verify cryptographic protocols,
– a tool-binding to first-order logic (FOL) automated theorem provers,
– a test-sequence generation for subsystems, sequence diagrams, activity dia-

grams, and statechart diagrams, and
– a checker for the static security constraints in UMLsec.

Advanced users of the UMLsec approach can use this framework to implement
tools for constraints of self-defined stereotypes. The developer can concentrate on
the verification and need not become involved with the input/output interface.
A tool only needs to obey the following assumptions made to keep framework
and tools simple but retain as much functionality as possible:

– It is given a UML model as input and may load further models if necessary.
– The tool exposes a set of commands which it can execute.
– A command is non-interactive. It receives parameters, executes, and returns

its output.
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Fig. 2. Example

– Each time the tool is called with a UML model, it may give back a text
report and also a UML model.

– The tool can execute several commands consequently; the internal state of
the MDR repository and all tools is preserved between command calls.

– The set of commands available for each tool may vary depending on the
execution history and current state.

On any Java-enabled platform, the tool can run as a console application (in-
teractive or batch mode), a Java Servlet on a webserver, and a GUI application
executed locally. For this, each tool integrated in the UML framework must
only implement one common interface. We now focus on a tool which automati-
cally verifies sequence diagrams including cryptographic algorithms for security
requirements by using automated theorem provers.

Sequence Diagram Analyzer Using ATPs. The sequence diagram to be analyzed
is drawn using a UML CASE tool. The analyzer produces an abstract interpreta-
tion of the execution semantics of the diagram, and the security requirement to
be verified, as a FOL formula in the TPTP format. TPTP is an input notation
used by many automated FOL theorem provers such as e-Setheo and SPASS.
More information about the security analysis method can be found in [Jür05].
Here we concentrate on the tool issues. A more comprehensive tutorial can be
found at [UML04]. The following notation is supported for cryptographic algo-
rithms: The encryption of the expression E under the key K is written as {E}K ,
the decryption of E using K as <E>K , the signature of E using K as [E]K , the
extraction of the signature E using the verification key K as /E\K , and the pri-
vate key belonging to the public key K is written as K−1. To use an argument in
another message or guard, one can make use of the variables in which incoming
values are stored. Each variable is named by the name of the operation which it
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is the argument of, followed by the number of the position of the argument. For
example, Init5 is the 5th argument of the message with the function-name Init.
An example drawn in the UML tool Poseidon is shown in Fig. 2. Tagged values
can be used to attach additional information to be used in the analysis:

Attacker’s Initial Knowledge. The attacker’s initial knowledge is stored in a
tag initial knowledge. One tag is defined for each such value.

Attack. If there is a tag secret with a value value, the security conjecture is
generated in TPTP which checks whether the data item value will remain secret
against the attacker considered during execution of the diagram. Alternatively,
the TPTP conjecture can be stored in the tag conjecture.

Message Ordering. With the tag order, one can determine whether the imple-
mentation of the sequence diagram enforces the message ordering at the receipt
of messages (which is the standard UML semantics for sequence diagrams), or
not (which is what is implemented for example at many smart-cards, see [Jür05].
By default, the order is respected.

Variable Notation. With the tag notation, one may switch between different
ways of definining the variable names that store the incoming arguments.

Guard Notation. For UML CASE tools which do not directly support the use
of guards in sequence diagrams (such as Poseidon 1.6), one can include them in
front of the stimulus labels, or as tagged values with the tag-name guard NR,
where NR is the number of the stimulus in the diagram to which the guard
belongs. The tag may be defined at any model element in the diagram. Using
the tag guard notation one can switch between these two alternatives.

Facts. First-order formulas in the TPTP notation can be added as axioms to
the TPTP file by storing them in tagged values with the tag-name fact.

Related Work. There seems to be no work yet on connecting ATPs to UML
CASE tools. Work on providing security analysis tool support for UML is per-
formed by the DEGAS project [DEG01]. More generally, there have been a
number of approaches for tool-support verifying general properties of UML di-
agrams, mostly by connecting UML CASE tools to model-checkers, including
[LP99, SKM01].

Conclusion. The framework has been used in several industrial applications: for
example, the binding to the automated theorem prover e-Setheo has been used
to verify the Common Electronic Purse Specifications and a biometric authen-
tication system. Experiences have been favorable (see [Jür05]).

Acknowledgements. Fruitful collaboration with the UMLsec group members, es-
pecially Andreas Gilg, on implementation issues is gratefully acknowledged.
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Abstract. Models provide an alternative perspective for the under-
standing of a software system. However, models reflect the state of the
system at the time of their creation (or last updating) but they do not
reflect intermediate changes during the system’s evolution. Depicting
perspectives without showing changes is like watching a movie through
a small set of still pictures (i.e., no motion). This paper demonstrates
this problem on an existing technique for the automated simplification
(abstraction) of class diagrams. We will show that it is computationally
feasible to maintain a set of abstract perspectives of a class structure such
that evolutionary changes to the class structure are instantly perceived
through its perspectives. For developers, this provides the ability to un-
derstand changes to systems from the modeling perspectives they care
about. It also gives the developers the confidence that their modeling
perspectives remain up-to-date with the system even while the system
evolves.

1 Introduction

Software is more than source code and software development is more than pro-
gramming. Software development generates and maintains a wide range of arti-
facts, such as documentation, requirements, or design models; all of which are
valuable to the understanding of a software system. These artifacts help devel-
opers in understanding the software system through different perspectives (i.e.,
representing different goals or problems). In doing so, these perspectives empha-
size certain development concerns and ignore others that are momentarily not
of interest. For example, the design is an abstraction of the implementation and
it often omits language-specific programming details that are not necessary to
the understanding of the system. Our notion of perspectives is similar to the
notion of views, however, a view typically hides parts of a model whereas our
perspectives interpret the hidden information.

Perspectives separate concerns and thus cope with the complexity of soft-
ware development. Perspectives reduce the complexity of software development

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 310–325, 2005.
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as they limit the amount of information the developers have to be aware of at any
given time (i.e., instead of having to understand the entire system, developers
only need to understand the perspectives). In this paper, we discuss perspectives
of UML (v1.3) class structures [14]. With modern software systems becoming in-
creasingly complicated, developers can easily lose their vision of the structure
of the system while diving into the implementation details. It is thus common
practice to retain abstractions of the class structure (sometimes referred to as
higher-level designs or architectures [15]). These higher-level perspectives typi-
cally represent snapshots of the lower-level design, omitting lower-level details.
It is not uncommon to retain different perspectives of the same lower-level de-
sign, to, say, represent different requirements, development concerns, or aspects
(aspect oriented software development [11]).

While developers derive tremendous value from perspectives, they are not
free. There is a cost in creating perspectives and a cost in maintaining them
(i.e, new or changing goals or needs [4]). If a perspective cannot be updated
promptly based on the changes made in a software system then the perspective
no longer correctly reflects the system. This lack of correctness may then mislead
developers.

Like many others [5, 12], we have investigated techniques for creating and
maintaining perspectives. This paper builds on one such technique for the au-
tomated class abstraction [7]. This technique simplifies (=abstracts) UML class
structures where developers can decide which classes to keep and which ones to
temporarily “hide.” This technique solves a range of concerns that will be dis-
cussed in Section 2. For example, the hidden classes have to be reinterpreted in
terms of their effect on the remaining, non-hidden classes. Our technique has the
benefit that developers may derive perspectives when they are needed. However,
our technique does not maintain the correctness of the perspectives thereafter
(i.e., during evolutionary changes). Of course, perspectives could be recreated
instantly after design changes but this is computationally infeasible because class
abstraction is not cheap computationally, there are potentially many perspec-
tives, and iterative software development [4] encourages changes to be frequent.
Relatively minor but frequent changes thus lead to costly re-transformations.

As an alternative, this paper discusses on how to efficiently update perspec-
tives by only propagating changes (additions, removals) [3]. This paper thus
contributes a technique for the instant and incremental abstraction of class struc-
tures to keep perspectives up to date continuously at a low cost. It works on the
same rules as the original abstraction technique (batch abstraction) but it only
updates changes. That is, any change to the system is evaluated in terms of its
impact onto all perspectives. The change is then propagated to every perspective
separately such that only those parts of the perspectives are updated that have
changed.

This paper also contributes a new philosophy to working with perspectives.
Since the perspectives are updated instantly, they provide developers with an
instant understanding on the high-level effect(s) of their changes. Developers now
instantly become aware about the impact of their low-level changes in context
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of the perspectives they care about. Previously, this could only be done after a
costly batch re-abstraction and comparison. Even then, it was often not possible
to tell exactly what had changed (e.g., if the name of two classes are swapped
then an after-the-fact comparison might confuse this with the movement of its
relationships).

This paper is organized as follows: Section 2 defines perspectives for class
abstraction and provides background for generating them automatically. Sec-
tion 3 discusses our approach to the incremental and instant class abstraction.
Section 4 shows results of several case studies. Finally we draw our conclusions
in Section 5.

2 Background

2.1 A Need for Perspectives

Fig. 1 shows a class diagram of a simplified hotel management system (HMS)
taken from [7]. The role of the HMS is to provide support for hotel reservations,
check-in/check-out procedures, and associated financial transactions. The class
diagram depicts details on how a guest is a person (inheritance), how every
person has an account or how payment and expense transactions are associated
with accounts.

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest
is-a

0..n

1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

Class Diagram

Fig. 1. Refinement of a Class Structure

While this class diagram is simple enough for human comprehension, we
have worked with class diagrams that include thousands of classes and many
more relationships [13]. It is impossible for humans to comprehend such class
structures and developers resort to abstraction as a means of coping with this
complexity. Abstraction depicts a class structure from a particular point of view,
concern, requirements, or other form of interest. We refer to such an abstraction
as a perspective of the class structure. Fig. 2 depicts four such perspectives of
the class structure in Fig. 1.

Naturally, the perspectives in Fig. 2 are class structures themselves albeit
simplified ones. A trivial form of a perspective is to represent a subset of the
class structure only. For example, Fig. 2 (a) simply depicts the classes Guest,
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Reservation, and Hotel (and their relationships) from Fig. 1 by omitting all
other classes and their relationships. These forms of trivial “perspectives” (i.e.,
sometimes referred to as views) are supported in many modeling tools, i.e., in
form of diagrams. Yet, it must be understood that deriving perspectives is not
just about eliminating details but also about re-interpreting the hidden details.
For example, Fig. 2 (b) depicts the classes Guest, Payment, and Expense (as
taken from Fig. 1) but it also depicts relationships among these three classes that
are not to be found in Fig. 1. These relationships are the abstract interpretation
of the hidden information. Fig. 2 (c) and (d) depict yet other perspectives that
“slice” across the classes in Fig. 1. Clearly, there are a range of benefits associated
with working with perspectives. Each perspective is easier to understand than
the original class diagram.

Guest may have Payment or Expense Transactions

ExpenseGuest

0..n0..n

Payment0..n0..n

Reservation may involve several
Guests but only one Hotel

Guest may have one Account

Account

0..10..1

Guest

Hotel

Reservation

(a)

(b)

(c)

Guest

Hotel

Guest

0..n

0..n

0..n

0..n

reservation_for

0..1

0..n

stays_at

Guest may have a
reservation for a
hotel and/or stay

at hotels

(d)

Fig. 2. Perspectives of the HMS system

Yet, without instant and incremental abstraction, it would be computation-
ally infeasible to maintain these perspectives consistent with the system while
the system evolves. That is, a change in Fig. 1 instantly renders all perspec-
tives obsolete unless this change is propagated to all affected perspectives. Such
propagation has the benefit that the perspectives continue to reflect the system
accurately (i.e., important for decision making); and it has the benefit that the
developers understand their system change(s) in terms of its impact onto the
various perspectives. For example, if the cardinality from Person to Account
changes from 0..1 to 0..n in Fig. 1 (i.e., a person may have many accounts and
not just one) then which perspectives need updating? Does this change affect the
Guest-Payment relationship in Fig. 2 (b)? Or does it change the Guest-Account
relationship in Fig. 2 (c)?

2.2 Automated Abstraction

We previously developed a transitive reasoning technique in collaboration with
Rational Software [10]. The technique takes arbitrary complex class structures
and infers transitive relationships among its classes. A transitive relationship is
the semantic equivalent of a collection of normal relationships. For example, if
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(1) A B C A C

(4) A CB CA

(5)
B C CAA

B C CAA(28)

(36) A A CA A CCB CB

(50) C CAA B

(63) C CABA

(68) A B C A CC A CBA

(70) A A CCB CBA A C

CA B CA

(118)

(81)

A A CA CCB CBA(83)

C CABA

Input Pattern Output Pattern

Fig. 3. Subset of Transitive Abstraction Rules for UML relationships [6]

A calls B and B calls C then, transitively, A calls C. Transitive relationships are
thus indirect relationships between classes.

A transitive relationship is always the result of a collection of direct relation-
ships. By composing the properties of a collection of direct relationships one can
infer properties of the transitive relationship. Properties of relationships include
the direction of the call, the type of relationship, or the cardinality of association
ends. If, say, two relationships have the same type and the same calling direc-
tion then transitively the two relationships can be composed into a single one
of the same type and direction (see Rule 70 in Fig. 3). Transitive relationships
are thus a form of abstraction where the transitive relationship is semantically
equivalent or weaker (less constrained) than the direct relationships it composes.
Fig. 3 gives an excerpt of about 121 transitive relationships defined in [6]. For
instance, rule 1 states that if A inherits from B and B inherits from C (input
pattern) then, transitively, A inherits from C (output pattern). Or Rule 118
states that if C depends on B, A is a part of B (diamond head), and A is called
by B (arrowhead) then, transitively, C depends on A.

The given transitive abstraction rules are simple in nature. Most rules de-
scribe a collection of two input relationships that are composable into a single
output relationship (or not composable if the output pattern does not have a
relationship). What makes this abstraction technique powerful is the large num-
ber of simple rules (121 rules for three types of class relationships and various
properties). Given the simplicity of the rules, the abstraction algorithm is fast
(see empirical studies in [6]); however, at the expense of precision. UML rela-
tionship semantics are not well-treated in the current UML specification which
may lead to uncertainties during transitive reasoning (e.g., A calling B and B
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calling C may not imply A calling C always; see validation in [6]). While we
cannot guarantee the correctness of all abstraction results, we found that we can
guarantee completeness. That is, the lack of an abstraction result true means
that there is no transitive relationship. Furthermore, validation showed that it
was a two-orders of magnitudes (100 fold) saving in checking the correctness of
abstraction results manually versus having to abstract by hand.

As input, the algorithm takes an arbitrary complex class structure and a list
of “important classes”. The list of important classes emphasizes the classes that
should not be hidden. In Fig. 3, the classes A and C are important and the
class B is not important as it gets replaced (together with its relationships) by
a higher-level relationship. A human has to make the decision what classes are
important as it depends on the circumstances and usage of the perspectives.

Important classes are not used for transitive reasoning during abstraction.
They remain untouched during abstraction but their relationships to other,
important classes are derived through transitive reasoning by hiding and re-
interpreting unimportant classes (=helper classes). Fig. 4 shows the use of tran-
sitive reasoning in understanding the relationship between the important classes
Guest and Payment (from Fig. 1). Although the two important classes are not
directly related to one another, a transitive relationship can be derived by elim-
inating the helper classes Person, Account, and Transaction. Fig. 4 shows that
the application of Rule 4 eliminates the class Person, the subsequent application
of Rule 70 eliminates the class Account, and, finally, rule 28 eliminates Trans-
action. This results in an incremental abstraction where the previous result is
then abstracted further if needed. The resulting abstraction is depicted in the
bottom of Fig. 4. It depicts the two untouched, important classes and a single
relationship between them that is semantically equivalent to the now-hidden
helper classes.

Guest PaymentPerson Account Transaction

Guest' Payment'Transaction'Account'

Payment''Guest'' Transaction''

Payment'''Guest'''

rule 4

rule 70

rule 28

Fig. 4. Transitive Relationship between Classes

In summary, transitive reasoning merges low-level classes and relationships
into higher-level relationships. This form of abstraction is necessary in cases
where lower-level classes are the result of refining a relationship. For instance,
the low-level class Account is important for implementing the HMS system but
it is not needed on a higher-level abstraction to convey the point that a guest
may have payment transactions. The class was thus hidden together with other
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classes and the hidden information was then re-interpreted through higher-level
relationships. It is also possible to merge classes into higher-level classes (instead
of relationships) and our approach is capable of doing so but its discussion is
not of importance in this paper [8].

In the remainder of the paper we refer to the class structure in Fig. 1 as the
design and to the abstractions in Fig. 2 as the perspectives. Abstraction assumes
the existence of the design and a list of important classes in order to compute
perspectives. The design and list of important classes must be provided by the
developer.

3 Approach

Automated abstraction gives the developer the ability to create one perspective
at a time. This perspective is then consistent with the design (assuming the
rules for abstraction are accurate) but any change to that design may render any
and all perspectives obsolete. Naturally, developers may re-compute perspectives
to make them consistent again; however, many automated techniques, such as
ours are computationally not cheap. It is thus infeasible to update perspectives
continuously while the design changes.

This paper extends our previous work through incremental abstraction. In-
stead of updating perspectives in their entirety (batch abstraction), we only
update changes. The basic goal of our approach is depicted in Fig. 5. Incremen-
tal abstraction understands both the design and its perspectives such that it
can reason about a change in the design in terms of its impact onto the per-
spectives. It then updates the perspectives by deleting obsolete information or
adding new ones. Compared to the abstraction of entire perspectives, we find
this incremental approach to be much more efficient.

perspective 1 perspective 2 perspective n...

design
(class structure) is there a change?

if yes, where?

how does this change affect
perspective 1? how does it

affect perspective 2, ...?

Fig. 5. Instant and Incremental Abstraction to maintain the Consistency between a
Design and its Perspectives

Incremental abstraction is a two-step process in that one has to understand
1) when and where changes happen in the design (class structure) and 2) how
such changes affect the given perspective(s). While a change to the design is a
constant, its impact is dependent on the particular perspectives at hand. This
section explores these two issues and discusses our solution.
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3.1 When and Where Changes Happen

To understand when and where changes happen in a design, we need to instru-
ment its drawing tool (e.g., the design capture tool). Of interest is information
about the creation, modification, and deletion of classes, their relationships, and
associated properties (e.g., methods, attributes). This task is only moderately
complex if the source code of the drawing tool is available. However, we previ-
ously demonstrated a capability for “spying” into commercial-off-the shelf tools
to elicit these kinds of information [9]. In particular, we demonstrated on IBM
Rational Rose [1] and Matlab/Stateflow [2] how to convert low-level keyboard
and mouse events into the kinds of events discussed above (e.g., class creation,
renaming, and relationship moving).

This technology has been published in [9] and is not described in more detail
here aside to say that we have built a tool support, called the UMLInterface,
that enables us to use the commercial tool IBM Rational Rose as a drawing tool
for class structures and is able to observe developer changes. Fig. 6 depicts the
architecture of our tool schematically where design changes from inside Rose
are forwarded to our abstraction tool, which then responds by updating the
perspectives in Rose. It is important to note that Rose maintains both the design
and its perspective(s) and our tool simply propagates the changes. Therefore,
all the visible activities happen inside Rose and the developer is never aware of
our tool.

IBM Rational Rose

UML Interface

Instant & Incremental
Abstraction Toolchanges

updates

Fig. 6. IBM Rational Rose and the Instant & Incremental Abstraction of Changes

Since Rose is used as both a design drawing tool and a perspective visual-
ization tool, we had to define logical structures for separating them. We also
had to define a way for developers to designate “important classes.” Recall from
Section 2 that perspectives must define lists of important classes. We found a
way of capturing this information inside Rose. However, these details are not
discussed here as they do not contribute to the main topic of this paper.

3.2 How Changes Affect Perspectives

Incremental abstraction assumes the existence of a design and its perspectives.
Changes to the design then cause updates to the perspectives. This approach
assumes that perspectives are initially consistent with the design. The change
to the design then causes an inconsistency and the simple propagation of the
change is sufficient to re-establish consistency. However, there are situations
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Table 1. Perspective Changes in Response to Design Changes

PerspectiveImpact of design onto
Class Relationperspectives

Add Remove Add Remove
Add no no no no

Remove no yes no yesClass
Upgrade yes no yes yesDesign

Downgrade no yes yes yes
Add no no yes noRelation

Remove no no no yes

where it is incorrect to assume initial consistency. For example, if a developer
loads an existing class diagrams then we need to ensure initial consistency by
abstracting all perspectives in their entirety. We refer to this process as the initial
batch abstraction which is, in our case, the same as the normal class abstraction
discussed in Section 2.

After the initial consistency between design and perspective is ensured, a
change to the design requires no more than the abstraction of the change to
again guarantee consistency. The kinds of changes in a design made by developers
during software include: adding a class, removing a class, upgrading a class in
a design from a helper class to an important class and downgrading a class
(there are also other changes but are not discussed here). Table 1 depicts design
changes in the rows. In response to a design change, the perspective may change
by adding/removing classes and adding/removing relationships. Table 1 depicts
these perspective changes in the columns.

We do not have a mechanism to prove the consistency between the batch
transformation and incremental transformation. Thus, we tested batch abstrac-
tion and incremental abstraction concurrently such that we could compare dif-
ferences. Fortunately, changes in the design have limited ways on how they affect
a perspective. The fields in Table 1 indicate what kinds of perspective changes
are caused by what kinds of design changes. For example, removing a class from
the design may remove classes and/or relationships from the perspective (e.g.,
if the class was important then the perspective may loose a class; if the class
was unimportant then the perspective may loose relationships). It is interest-
ing to observe that class and relationship changes in the design have few effects
onto the perspectives but class upgrades/downgrades are more complex. Table
2 summarizes and discusses these impacts in more detail.

Changing a Class in the Design
Adding a new class to a design does not add any new relation to that design.
Therefore the perspective remains unchanged. However, deleting a class from
a design may result in a change in the perspective. For example, if a developer
decides that the class Person (Fig. 1) is no longer required in the design then this
also changes some of the perspectives. For example, the perspective “Guest may
have Payment or Expense Transactions” becomes out of date because Person is
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Table 2. Design Changes and Impact onto Perspectives in More Detail

User Action Changes based on perspective
Add a class No change
Remove an Delete class from the perspective. Also remove
important class the relations between the class and all other

important classes.
Remove a Delete relations from the perspective whose
helper class abstractions used the helper class.
Add a relationship Find paths between important classes that
between two classes pass through the relationship. Abstract

these new paths into relations.
Remove a relation Delete relations from the perspective that
between two classes were abstracted from the removed relation.
Upgrade a class from a Add class to the perspective. Delete relations
helper class to an from the perspective that were abstracted
important class from the upgraded class (the previous

helper class). Also find paths between
the new important class and other important
classes. Abstract these new paths into
relations.

Downgrade a class from Remove class from perspective. Find paths
an important class to between important classes that pass through
a helper class the downgraded class. Abstract these new

paths into relations. Also delete relations from
the downgraded class to other important
classes.

a helper class in that perspective and its removal affects the paths from Guest to
Expense and Payment (recall Fig. 4). Consequently, there are no longer abstract
relations among these classes and the perspective needs to be updated.

Since the removed class is a helper class, incremental abstraction only removes
those relations in the perspective that were abstracted from it. Fig. 7 shows a
design (left) and its perspective (right) with X and Y being important classes.
If developers remove the helper class A in the design then our approach deletes
the relation (2+A+3)’ because this helper class was used to derive that relation.

Removing an important class in a design obviously results in its removal from
the perspective. As a side-effect of the removal of an important class, all relations
connecting to the important class must be removed also. For example, in Fig. 7
the removal of the design class X instead of A would delete the perspective class
X’ and all its relationships.

Changing a Relationship in the Design
There are two situations related to changing a relation in a design: adding a
relation and deleting a relation. The addition of a design relation implies that
there are potentially new paths among the important classes. This in turn may
result in new relationships in the perspective. For example, if a developer adds a
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Fig. 7. Remove a helper class from a design

Y

A

X

(a) design

Y'X'

1

2 3

1'

(2+A+3)'

(b) perspective

Fig. 8. Add/delete a relation in a design

relation between the Transaction and Account classes then this again affects the
perspective “Guest may have Payment or Expense Transactions”. The addition
of the relation creates new paths among Guest, Expense, and Payment. Thus,
we need to find all new paths between the important classes that pass through
the new relation and abstract them.

Fig. 8 shows a general case for adding a new relation. If the new relation “2”
is added between classes X and Y (Fig. 8 left) then we need to search for new
paths among the reachable important classes (X and Y in this case) that pass
through the relation. There is one such path (2+A+3)’ which is then abstracted
and added to the perspective.

The deletion of a relation is similar to the deletion of a helper class. If a
developer deletes a relation from the design then incremental abstraction only
removes those relations in the perspective that were abstracted from it. For
example, if relation 2 in Fig. 8 is now removed from the design then the relation
(2+A+3)’ in the perspective must be removed also. While the removal of a design
class may affect both perspective classes and relations, the removal of a design
relation only affects perspective relations.

Upgrading and Downgrading a Class in the Design
Upgrading a class changes it from a helper class to an important class. Upgrad-
ing affects perspectives more than class and relation changes (recall Table 1).
However, upgrading is not complex but simply the concatenation of class and
relation changes. If a developer changes a helper class to an important class then
three things have to be done. First, the newly-important class has to be added



Maintaining Life Perspectives 321

B'

3 4

A

21

Y

B

X

(a) design

1

3 4

(b) perspective
before upgrade

(c) perspective
after upgrade

Y'X'Y'X'

(3+B+4)'

(1+A+2)' (1+A+2)'

Fig. 9. Upgrade a class A

to the perspective (i.e., because important classes are not hidden). Second, all
relations in the perspective that were abstracted from it need to be removed.
And, third, all paths between it and other important classes must be found,
abstracted, and added to the perspective.

For example, if developers are not only interested in “Guest may have Pay-
ment or Expense Transactions” but also in “Guest may have Transaction” then
the helper class Transaction should be upgraded. The paths among the classes
Guest, Expense, and Payment have to be removed from the perspective because
they all pass through Transaction which is no longer a helper class. Transaction
also needs to be added to the perspective and all paths between Transaction and
Guest, Expense, and Payment need to be found and abstracted.

Fig. 9 (a) shows a general case for upgrading the class B in a design where
classes X and Y are important. Before the upgrade, the perspective had two
classes (X’ and Y’) to reflect the important classes of the design, and it had two
relations between them to reflect the two paths through A and B (see Fig. 9
(b)). After class B is upgraded to an important class, incremental abstraction
adds B’ to the perspective, eliminates all relations in the perspective that were
abstracted from B (e.g., (3+B+4)’), and adds relations from B’ to all other
important classes if it can find abstractable paths (see Fig. 9 (c)).

Downgrading an important class to a helper class is the exact opposite of
upgrading a class (simply reverse the before/after picture in Fig. 9). The down-
grading of a class removes that class from the perspective and with it all its
relations to other important classes. Furthermore, it searches for paths among
the important classes that pass through the downgraded class.

4 Validation

Software development changes have side effects. Yet these side effects are local-
ized in that single changes in the design typically only cause small changes to
their perspective(s). It is thus computationally wasteful to dispose of abstractions
in their entirety simply because of small changes in the design. We evaluated the
design models of four software systems (see Table 3) ranging between 9 classes
and 127 classes to investigate this trade-off.
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Table 3. Design Models used for Cases Study

Design Perspective
Classes Relations Model Size Classes Relations

Hms 9 9 104 3 3
Vod 65 199 1683 7 15

Visualizer 50 92 823 6 17
iTalks 107 127 1270 11 25

Fig. 10 (left) depicts the impact of design changes onto perspectives. As
was discussed previously, there are essentially three types of changes of interest:
up/downgrading, class changes (add/remove a class) and relationship changes
(add/remove a dependency, association, or generalization). We subjected these
models to over 800 random changes and observed their impact. For example,
a change to a trace dependency in the iTalks design impacted in average 2.5
perspective elements (at least one and at most 8); or a change to a relationship
impacted in average 0.9 perspective elements (0-5). The other three systems
exhibited similarly small impact numbers which confirms our initial claim that
design changes typically only have small impacts onto the perspectives for class
abstraction. This observation is important for scalability.

While Fig. 10 (left) depicts up/downgrading, class, and relationship changes
independently, there are situations where they occur together. For example, in
IBM Rational Rose, the deletion of a class also causes the deletion of all its re-
lationships and knowledge of its important/unimportant markers. Or the copy-
and-paste action supported in many modeling tools allows a set of classes, rela-
tionships, and, perhaps, important/unimportant markers to be pasted at once.
We thus conducted over 280 random changes that involved the deletion and cre-
ation of classes with relationships and important/unimportant markers. Fig. 10
(right) depicts the averaged results of these tests. For example, a typical deletion
of a class in the vod system also deleted three design relations and 0.2 “impor-
tant” markers (i.e., every 5th class deleted an important class). We refer to this
deletion as a group deletion. In response, a group deletion changed elements in
the perspectives. In the vod system, in average 0.2 classes and 2.3 relationships
were changed per group deletion. These numbers demonstrate that the grouping
of elements has only mild negative effects onto the impact of changes.

It must be noted however that a single copy-and-paste could involve an entire
class structure which would then result in a change to the entire perspective.
However, these kinds of changes are rare and so is their associated computational
penalty.

Fig. 10 (left) also depicted another interesting observation. In all four sys-
tems, the up/downgrading had more severe effects onto the perspectives than
relationship changes, which in turn had more severe effects than class changes.
The differences are quite strong in that a relationship change impacts in average
3.5 times more perspective elements than a class change; and a up/downgrade
impacts in average 2.9 times more elements than a relationship change (one order
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of magnitude difference). The differences are caused by the path re-evaluations
that are part of class abstraction.

Fig. 11 depicts the average numbers of path re-evaluations for all four systems
and it is obvious that up- and downgrading are particularly expensive. However,
it must be noted that the path re-evaluations during incremental abstraction are
cheap in comparison to the existing approach to abstraction (the batch abstrac-
tion of entire class structures). Also, we believe that trace changes are much less
likely than relationship or class changes. After all, the four systems contain only
27 traces but almost 700 classes and relationships.

5 Conclusion

Abstraction, as in the simplification of complexity, plays an important role dur-
ing software development. This paper demonstrated on UML class structures
that it is possible and computationally feasible to maintain“life” perspectives
that change instantly with system changes. The foremost advantage of instant
transformation is that perspectives never become obsolete. Another advantage is
that developers can observe system changes through their perspectives. The lat-
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ter, in particular, is not common practice today because of the enormous cost of
instant transformation. Yet, we believe that it is vital for the uninterrupted work
flow of software developers to maximize the instant transformation of all kinds
of information. Some of this capability is already transitioning into software de-
velopment today. For example, many programming environments are capable of
keeping the source code consistent with GUI modeling tools. We therefore see
this work as another step in the same direction; and as the first step in doing
so for software modeling and its model perspectives. The approach discussed in
this paper is fully tool supported.

It is our future work to investigate the coupling of the instant and incremental
abstraction discussed in this paper with the instant and incremental compari-
son for scalable consistency checking. That is, instead of checking the validity of
entire models, we believe it is computationally much cheaper to check the con-
sistency of models incrementally. Using instant and incremental abstraction to
guide this instant and incremental consistency checking has not been attempted
yet. It is our future work to investigate how to formally prove the consistency
between batch and incremental transformation.
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Abstract. We present a framework for formally proving that the com-
position of the behaviors of the different parts of a complex, real-time
system ensures a desired global specification of the overall system. The
framework is based on a simple compositional rely/guarantee circular
inference rule, plus a small set of conditions concerning the integration
of the different parts into a whole system. The reference specification
language is the TRIO metric linear temporal logic.

The novelty of our approach with respect to existing compositional
frameworks — most of which do not deal explicitly with real-time re-
quirements — consists mainly in its generality and abstraction from any
assumptions about the underlying computational model and from any
semantic characterizations of the temporal logic language used in the
specification. Moreover, the framework deals equally well with continu-
ous and discrete time. It is supported by a tool, implemented on top of
the proof-checker PVS, to perform deduction-based verification through
theorem-proving of modular real-time axiom systems.

As an example of application, we show the verification of a real-time
version of the old-fashioned but still relevant “benchmark” of the dining
philosophers problem.

Keywords: Formal verification, modular systems, real-time, composi-
tionality, rely/guarantee, axiom systems.

1 Introduction

Formal methods are more and more recognized to be a useful tool for the develop-
ment of applications, as they allow their users to precisely verify the correctness
of systems in their early development phases, before uncaught mistakes become
overly costly to fix. One drawback often attributed to formal methods, how-
ever, is that they do not “scale up”, i.e. when the system grows in complexity,
they are too cumbersome and unwieldy to be used effectively. A natural solution
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to this problem is to apply well-known software engineering principles such as
modularity and separation of concerns to the verification of formal models. A
compositional framework can help in this regard, in that it allows one to focus on
the single parts of the system at first, and then analyze their mutual interactions
at a later moment with a smaller effort than it would be required if all aspects
(local and global) of the application were taken into account at once.

This paper presents a compositional inference rule for the TRIO language [5]
that is suitable to formally prove the correctness of the behavior of a modular
system from the behavior of its components. TRIO is a metric temporal logic
for modeling and analysis of time-critical systems, and has been used in a num-
ber of industrial projects. Its advanced modular features are useful in writing
specifications of complex systems. Our framework combines these features with
the compositional inference rule through some application methodology that
facilitates its practical use in structured specifications.

The approach followed in this paper belongs to the general framework of
axiom systems, where a specification consists of a set of logic formulas and the
verification consists in formally demonstrating that certain desired properties
follow deductively from the specification formulas. This framework is indeed
very general and abstract, as it does not rely on specific semantic assumptions
and is independent of any notion of underlying computational model (to be
considered when moving from specification towards implementation). In fact,
proofs in our framework are to be intended as in classic logic deduction [15], and
are supported and semi-automated by the theorem proving tool PVS [18]. Also,
even if the reference language is TRIO, the results can be easily extended to any
logic formalisms for the description of real-time axiom systems.

The paper is structured as follows: Section 2 shortly introduces the TRIO lan-
guage; Section 3 presents a proof-oriented compositional framework for TRIO;
Section 4 applies the framework to a timed version of Dijkstra’s dining philoso-
phers problem [8]; Section 5 reviews the most important compositional rules
and frameworks in the literature, and points out where our approach differs
from previous works on this subject; Section 6 draws conclusions and outlines
future research.

For reasons of space, some of the formulas and proofs discussed in the paper
have been omitted. The interested reader can find these details in an extended
version of the paper, available online [11].

2 TRIO

TRIO [5] is a general-purpose specification language suitable to describe real-
time systems. It is a first-order linear temporal logic that supports a metric on
time. In addition to the usual propositional operators and quantifiers, it has a
basic modal operator, called Dist, that relates the current time, which is left
implicit in the formula, to another time instant: given a time-dependent formula
F (i.e. a term representing a mapping from the time domain to truth values) and
a term t indicating a time distance, the formula Dist(F, t) specifies that F holds
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Table 1. TRIO derived temporal operators

Operator Definition
Past(F, t) t ≥ 0 ∧ Dist(F,−t)
Futr(F, t) t ≥ 0 ∧ Dist(F, t)
Som(F ) ∃d : Dist(F, d)
Alw(F ) ∀d : Dist(F, d)

AlwP (F ) ∀d > 0 : Past(F, d)
AlwF (F ) ∀d > 0 : Futr(F, d)

Lasted(F, t) ∀d ∈ (0, t) : Past(F, d)
Lasts(F, t) ∀d ∈ (0, t) : Futr(F, d))

Within(F, t) ∃d ∈ (0, t) : Past(F, d) ∨ Futr(F, d)
WithinP (F, t) ∃d ∈ (0, t) : Past(F, d)
WithinF (F, t) ∃d ∈ (0, t) : Futr(F, d)
Since(F, G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)
Until(F, G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)

UpToNow(F )
{∃d > 0 : Lasted(F, d)) if dense

Past(F, 1) if discrete

NowOn(F )
{∃d > 0 : Lasts(F, d)) if dense

Futr(F, 1) if discrete
Becomes(F ) UpToNow(¬F ) ∧ (F ∨ NowOn(F ))

at a time instant whose distance is exactly t time units from the current instant.
Notice that, in this paper, we deliberately do not formally specify a semantics for
the interpretation of TRIO formulas: in fact all the discussion is independent of
how the modal operator Dist is interpreted, and of which computational model
is chosen, since it involves only syntactic manipulation of formulas.

A number of derived temporal operators can be defined from the basic Dist
operator through propositional composition and first-order logic quantification.
Table 1 shows those used in this paper. Notice that TRIO operators predicat-
ing on intervals by default do not include the interval boundaries. We define
variations that may or may not include such boundaries by using the sub-
scripts i (included) or e (excluded). E.g. AlwPi(F ) ≡ ∀d ≥ 0 : Past(F, d),
AlwPe(F ) ≡ AlwP (F ), WithinFei ≡ ∃d ∈ (0, t] : Futr(F, d), WithinFii ≡ ∃d ∈
[0, t] : Futr(F, d), etc.

TRIO is well-suited to deal with both dense and discrete time. For specifying
large and complex systems, and to support encapsulation, reuse and information
hiding at the specification level, TRIO has the usual object-oriented constructs
such as classes, inheritance and genericity. The basic encapsulation unit is the
class, which is a collection of parameters, basic items, formulas and an interface.

Items are the primitive elements of the specification, such as predicates, time-
dependent variables, functions, etc. States and events are time-dependent items
with a particular temporal behavior: events are predicates that are true only at
isolated time instants; states are predicates which are true on non-empty time
intervals (see [12] for a more precise definition).

We illustrate TRIO’s features by introducing the specification of the dining
philosophers problem [8]. Our solution is based on a philosopher class and assumes
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a continuous time model. Continuous time introduces some peculiar difficulties
in the specification and verification phases, which we will handle exploiting an
axiomatic-deductive approach. The basic items of the class are the event item
start for the system initialization, and the items take(s) and release(s), with
s ∈ {l, r}, indicating, for each philosopher, the action of taking or releasing
the left or right fork. Other items are the state eating, which is true when the
philosopher is eating, and the states holding(s) and available(s), meaning that
the philosopher is holding a given fork or that the fork is available (i.e. not held
by the adjacent philosopher). The philosopher class is parametric with respect to
three constants te, Te, Tt. They denote, respectively, the minimum eating time,
the maximum eating time and the thinking time after an eating session, before
becoming hungry again. Obviously, we assume Te > te > 0.

For each TRIO class, formulas are divided into three categories: axioms,
assumptions and theorems. Axioms postulate the basic behavior of the system,
assumptions express constraints we must discharge by means of other parts of
the system (external to the current class) and theorems describe properties that
are derived from other formulas. Any TRIO formula is implicitly universally
quantified with the Alw operator.

We formalize the basic behavior of a philosopher through axiom formulas.
For the sake of space limit, we do not present explicitly all the formulas of the
example, but just give an informal presentation of some of them. The interested
reader can find the complete example in the extended version of this paper avail-
able online [11]. We postulate that each philosopher always takes and releases
both forks simultaneously (axiom holding synch); consequently, if only one fork
is available, the philosopher waits till the other fork becomes available as well.1

A philosopher becomes “hungry” when he/she has not eaten for a period longer
than Tt. If he/she is hungry and if the forks are available, two situations are
possible: either he/she takes both forks, or nondeterministically one of his/her
neighbors takes a fork at that very time, so that the fork is not available anymore
and the philosopher “loses his/her turn”. This is formalized by axiom hungry.

Axiom 1 (hungry) Lasted(¬eating, Tt)∧UpToNow(available(l)∧available(r))
⇒ (take(l) ∧ take(r)) ∨NowOn(¬available(l) ∨ ¬available(r)).

Axioms eating def and eating duration state that, when a philosopher succeeds
in acquiring both forks, he/she eats for a time duration of more than te and
less than Te time units, after which he/she releases both forks. Whenever a
philosopher holds both forks we consider him/her eating. When he/she is not
eating we say he/she is thinking (axiom thinking). Finally, a thinking session
which has just begun lasts Tt time units (axiom thinking duration).

Each TRIO class has an interface, defined as the set of items and formu-
las that are externally visible. The user can declare each item to be visible or

1 We introduce this simplification with respect to the traditional formulation because
our example aims at proving a real-time, non starvation property, rather than the
absence of deadlocks.
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non-visible; henceforth all the formulas predicating on visible items only are
considered as visible, while all the other formulas are considered as non-visible
outside the class. The interface is synthetically represented with a graphical
notation: Figure 1 illustrates the interface of the philosopher class.

philosopher

eating

take(s)

start

holding(s)

available(s)release(s)

Fig. 1. Interface of the philosopher class

A structured TRIO specification is a collection of modules, i.e. instances of
TRIO classes. The behavior of the overall composite system is given by the
combination of the behaviors of its modules (i.e. it is defined by the logical
conjunction of the axioms). We compose N ≥ 2 instances of the philosopher class
into the new composite class dining N. The N modules of the philosopher class
are instantiated in an array Philosophers indexed by the range [0..N − 1]. The
modules are connected so that the available item of each philosopher corresponds
to the negation of the holding item of the philosopher on his/her left/right.

3 A Compositional Framework in TRIO

In this section, we introduce a compositional framework for axiom systems, and
the TRIO language in particular. The rationale of our approach is the following.
The specification of a complex system is structured into classes. The fundamen-
tal behavior of each class is captured by axiom formulas. The derived behavior
of each class can be expressed by theorem formulas. In general, according to the
rely/guarantee paradigm, we want to relate the derived behavior of a class with
certain properties of the (external) environment we assume to hold. When we
compose the class with other classes constituting its actual environment, we have
to discharge (i.e. prove) the assumption formulas by means of formulas of other
classes. If the assumptions on the environment are temporally closed formulas
(i.e. they express time-invariant properties), we may use TRIO assumption for-
mulas to represent them; then, when discharging them, it is important to avoid
circularities, in order to guarantee the soundness of the composite specification.
If, on the other hand, we have to express assumptions on the environment that
are directly temporally related with the derived behavior they guarantee,2 we
need a new operator: the � operator (called time progression ) for the TRIO lan-
guage, introduced in Section 3.2. When we compose the class with other classes,

2 Notice that this is likely to happen when specifying real-time systems.
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rely/guarantee formulas expressed using the � operator are composed using an
ad hoc inference rule which handles temporal circularities correctly, according
to the semantics of the operator. Finally, once the local assumptions have been
discharged, we can infer the global specification from the logical composition of
the (valid) local specifications.

Notice that the � operator, while similar to the operators presented in [1, 16],
differs from them in that it does not impose any constraints nor conditions on the
properties involved and the underlying computational model of the formalism.
Section 5 discusses this issue in more detail.

3.1 Rely/Guarantee Specifications

Let us consider the rely/guarantee specification of a TRIO class C written ac-
cording to the following guideline. The basic behavior of C is defined in terms
of axioms over both visible and non visible items, which rely on no assumptions,
since they just state the very basic behavior of the class. Then, we wish to de-
rive a number of remarkable properties of the class as theorems. These theorems
often depend on assumptions about the behavior of the environment. In TRIO,
these assumptions can be stated using the language construct of the assumption
formula. Let us name AXC , ASC and T HC the set of all axioms, assumptions
and theorems of class C, respectively, and let F = AXC ∪ ASC ∪ T HC be
the set of all formulas of C. Furthermore, for each set of formulas F , we define
F� ⊆ F to be the set of visible formulas in F , i.e. the formulas predicating over
visible items only (see Section 2). Therefore, the complete specification of C is
represented by the formula AXC ∧ ASC ⇒ T HC .

Let us map these ideas on the philosophers example. Section 2 showed some
axioms of the philosopher class. A derived property of the class we want to state
is that there is always a time interval in which both forks are available to the
philosopher. In our axiomatization, it suffices to show that this time interval ends
at a time distant at most Tt + 2Te time units. The above property is expressed
by the following TRIO formula.

Theorem 2 (fork availability)
WithinFei(UpToNow(available(l) ∧ available(r)), Tt + 2Te)

The validity of this theorem cannot be guaranteed regardless of the behav-
ior of the environment of this class. Therefore, we introduce three assumption
formulas that suffice to deduce Theorem 2. First of all, each fork has to become
available within Tt + Te time units or be already available and remain so for a
sufficiently long (i.e. ≥ Tt) amount of time. Second, we want each fork to be
available, for a non-empty time interval, within Te time units. This is basically
like assuming that the adjacent philosophers eat no longer than Te time units.
Finally, when a fork becomes available, we assume it to stay so for (at least) Tt

time units, i.e. the thinking time of the neighbor philosophers is no shorter than
Tt. These three assumptions are formalized by three formulas named availability,
availability 2 and lasting availability (not shown here for brevity).
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Let us now formalize what happens when composing TRIO classes. Let us
consider n modules C1, . . . , Cn. For all i = 1, . . . , n, module Ci has a rely/guar-
antee specification expressed synthetically by the formula AX i ∧ ASi ⇒ T Hi.
Let Cglob be the class obtained by composing the n instances Ci as modules of
Cglob. The composition of the n modules is described by the logical conjunction of
all the local specification formulas. Therefore TRIO classes are compositional, in
that the semantics of the composition of classes is given by the logical conjunction
of the semantics of the classes which are put together. In general, class Cglob has
its own axioms, assumptions and theorems, besides those of its modules, to allow
the recursive application of the method. Hence, Cglob is described by the formula
AX glob ∧ ASglob ⇒ T Hglob.

We seek a way to prove:

AX glob ∧ ASglob ∧
∧

j=1,...,n

(AX j ∧ ASj ⇒ T Hj) ⇒ T Hglob

Hence, we want to find a way to discharge the local assumptions of each class
by means of visible formulas of other classes, so that we can in turn use the
validity of the local visible theorems to deduce global results. As it is simple to
realize, this kind of reasoning involves a circularity between assumptions and
guarantees of the modules, so that a näıve rule does not guarantee soundness, in
general. We want to rule out these invalid reasonings in order to obtain a valid
rule for composition. To this end we introduce a new temporal operator suitable
to express rely/guarantee compositional specifications, and different conditions
on the initial validity of the environment assumptions and on how to discharge
them. Through these elements, we finally provide a valid compositional rule for
rely/guarantee reasoning in TRIO.

3.2 A Rely/Guarantee Inference Rule

Let us introduce the � “time progression” operator for the TRIO language,
suitable for expressing temporal relationships between assumptions and guaran-
tees. Let P and Q be two time-dependent formulas. We define the � operator
as a shorthand for the formula:

P � Q �
{

if dense :AlwPe(P ) ⇒ AlwPi(Q) ∧NowOn(Q)
if discrete :AlwPe(P ) ⇒ AlwPi(Q)

Informally speaking, P � Q means that Q lasts at least as long as P does and
even “a bit longer”.

Now, we consider rely/guarantee specifications whose semantics is given in
terms of the � operator. Therefore, if E is the environment assumption and M
is the guarantee, the rely/guarantee specification is written as E � M . Notice
that we now admit temporally open formulas to be assumptions and guarantees.

Let us state, without proof, the following property of the � operator; the
interested reader can find a proof in [11–Appendix A]. Note that the lemma
holds both in dense and in discrete time models.
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Lemma 1. For any formulas P , Q and R, if:

1. Som(AlwPe(P ))
2. Alw(Q ∧R ⇒ P )

then:
Alw(P � Q) ⇒ Alw(R � Q)

The following proposition states a sound inference rule3 for the � operator.

Proposition 1 (Rely/Guarantee Compositional Inference Rule). If, for
i = 1, . . . , m (m ∈ N+):

1. Som(AlwPe(Ei)) (that is Ei is initialized)
2. E ∧∧

j=1,...,m Mj ⇒ Ei

3.
∧

j=1,...,m Mj ⇒ M

then: Alw
(∧

j=1,...,m(Ej � Mj)
)
⇒ Alw(E � M).

Proof. Assume Alw(
∧

j=1,...,m(Ej � Mj)). It is simple to realize, by considering
the definition of the time progression operator, that this implies
Alw

((∧
j=1,...,m Ej

)
�

(∧
j=1,...,m Mj

))
. Moreover, hypothesis 2 implies that

Alw(E ∧ ∧
j=1,...,m Mj ⇒

∧
j=1,...,m Ej), since it holds for every i = 1, . . . , m.

Finally, hypothesis 1 implies that Som(AlwPe(
∧

=1,...,m Ei)), since there exists
a base interval such that the conjunction of the Ei’s is true on it4.

Therefore, we can apply Lemma 1 by substituting
∧

j=1,...,m Ej for P ,∧
j=1,...,m Mj for Q and E for R. We get:

Alw
((∧

j=1,...,m Ej

)
�

(∧
j=1,...,m Mj

))
⇒ Alw

(
E �

(∧
j=1,...,m Mj

))
.

Finally, by combining it with hypothesis 3 and with the definition of the time
progression operator, we get the desired result. ��

Furthermore, we introduce a variation of the � operator for dense time
domains: the �i operator. P �i Q is defined as AlwPi(P ) ⇒ AlwPi(Q) ∧
NowOn(Q), and Proposition 1 is valid for �i as well. This variation will be
used in Section 4.

3 As it is often the case with compositional rules (and formal languages in general),
there is a trade off between (relative) completeness and simplicity and ease of use
[16, 14]. In this work, we have chosen to privilege the latter over the former, so that
the inference rule in Proposition 1 is incomplete, as several other compositional rules
in the literature [16, 4]. For the sake of space limit, we do not discuss this issue in
depth, leaving it for future extensions of this work.

4 Consider the intersection of the intervals on which each of the Ei’s is individually
true; this intersection is non-empty, since all intersected intervals are unbounded on
the left, because of the AlwP operator.
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3.3 Integrating TRIO Modules

Let us consider the composition of n modules C1, . . . , Cn. We want to show briefly
how the inference rule of Proposition 1 can be used in a large TRIO specification,
integrating it with generic TRIO formulas. In general, each of the n modules we
compose may have one or more rely/guarantee formulas of the form E � M
among its theorems. For each module j = 1, . . . , n, let T Hrg

j ⊆ T Hj be the set
of theorems in the form E � M of class j. More formally, for each theorem
formula F ∈ T Hj , F ∈ T Hrg

j if and only if F can be written as F ≡ E � M
for some formulas E and M . Let us also define m to be the number of such
formulas over all classes: m =

∑
j=1,...,n |T Hrg

j |. Moreover, T Hnrg
j is defined as

the complement set T Hj \ T Hrg
j for all j = 1, . . . , n. The composite class Cglob

also has its own rely/guarantee formula Eglob � Mglob among its theorems
T Hglob.

Now, we have to define what is a dependency between two formulas. Let us
consider a formal proof π: it consists of a finite sequence of formulas, together
with their justifications (see, for example, [15]). We say that a formula χ directly
depends upon another formula φ in the proof π, and write φ �π χ, if and only
if φ appears before χ in the proof and χ is the result of the application of an
inference rule which uses φ. The transitive closure +� (“depends upon”) of the �
relation φ +�π χ is defined as usual. The notion of dependency can be extended
to a set of proofs Π: for any two formulas φ, χ we say that φ +�Π χ if and only
if there exists a proof π ∈ Π such that φ +�π χ.

Finally, we can formulate a “checklist” to follow when verifying our com-
posite specification. The rationale is that we avoid circularities in discharging
temporally closed assumptions, and we resolve possible circularities between �
specifications by using the inference rule of Proposition 1. More precisely, one
should proceed as follows.

1. Verify each local specification, that is prove that for all k = 1, . . . , n: AX k ∧
ASk ⇒ T Hk. From our perspective, this step is considered to be atomic,
but obviously the compositional approach can be applied recursively to each
module.

2. Show that the local assumptions can be discharged by means of global for-
mulas, local axioms and theorems, and visible formulas of other classes. In
formulas, this corresponds to proving that for all k = 1, . . . , n: Fglob∧AX k∧
T Hk ∧

∧
j=1,...,n∧j 
=k F�

j ⇒ ASk.
3. Prove that the global non-rely/guarantee theorems (i.e. not involving the

� operator) follow from the local visible formulas and from the global ax-
ioms, assumptions and other (i.e. rely/guarantee) theorems. In formulas, this
means proving AX glob ∧ ASglob ∧ T Hrg

glob ∧
∧

j=1,...,n F�
j ⇒ T Hnrg

glob.
4. Show that each local rely/guarantee formula has an assumption which sat-

isfies the initialization condition (as in hypothesis 1 of Proposition 1). In
order to prove the initialization condition, we can use global and local for-
mulas, plus any visible formula of any other class of the system. In formulas,
this corresponds to proving that for all k = 1, . . . , m: for all j = 1, . . . , n: if
(Ek � Mk) ∈ T Hrg

j then Fglob ∧ Fj ∧
∧

i=1,...,n F�
i ⇒ Som(AlwPe(Ek)).



Automated Compositional Proofs for Real-Time Systems 335

5. Show that each local rely/guarantee formula has an assumption that can be
discharged by means of global and local formulas, or by the global assump-
tion, or by means of guarantees of other classes. This corresponds to hypoth-
esis 2 in Proposition 1. In formulas, this is proving that for all k = 1, . . . , m:
for all j = 1, . . . , n: if (Ek � Mk) ∈ T Hrg

j then: Fglob ∧Fj ∧
∧

i=1,...,n F�
i ⇒

Alw(Eglob ∧
∧

i=1,...,m Mi ⇒ Ek).
6. Show that the global guarantee follows from the local guarantees of all mod-

ules and from global formulas and local visible formulas of any class. This
corresponds to hypothesis 3 of Proposition 1. In formulas, this is proving
Fglob ∧

∧
j=1,...,n F�

j ⇒ Alw(
∧

j=1,...,m Mj ⇒ Mglob).
7. Be sure that in all the above proofs there are no circular dependencies among

any two closed formulas. Formally, this corresponds to checking that in the
set Π of all the above proofs, for all formulas φ ∈ ⋃

k=1,...,n(ASk ∪ T Hk) ∪
T Hglob: ¬(φ +�Π φ).

From the application of the above steps, thanks to the inference rule of Propo-
sition 1 and the absence of circularities, we conclude the validity of the global
specification AX glob ∧ ASglob ⇒ T Hglob

4 Compositional Dining Philosophers

This section illustrates an analysis of the dining philosophers problem, with the
compositional proofs of some relevant properties, as an example of compositional
specification and verification in TRIO using the rely/guarantee paradigm. Even
if the example does not constitute an “industrial-strength in-the-large” case
study, we believe that, after several decades of successful application, it is still
an insightful and thought-provoking example to assess the validity of — not only
— our compositional rule in the short space of a conference paper. All details
of the proofs have been checked with the encoding of the TRIO language in the
PVS proof checker [18] (see [12, 10] for some details of this encoding), even if we
present them succinctly (due to space limit) and in human-readable form.

4.1 One Rely/Guarantee Philosopher

Assumptions availability, availability 2 and lasting availability of Section 3.1 ex-
press the suppositions that each philosopher makes about the behavior of his/her
neighbors. In turn, the philosopher must guarantee to them that he/she will not
be unfair and will periodically release the forks. This requirement is expressed
by two theorems, taking turns and taking turns 2 (not explicitly shown), that
are analogous to the assumptions availability and availability 2, while assumption
lasting availability corresponds to axiom thinking duration (see Section 2). For the
sake of brevity, the proofs of these two theorems, which are directly derivable
from the axioms of the philosopher class only, are not discussed here.

The local non-starvation property requires that, assuming a regular availabil-
ity of the forks, we can guarantee that, after the system starts, the philosopher
eats regularly. This requirement can be formalized using the �i operator, relat-
ing the availability of the forks in the past to the occurrence of the eating sessions
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in the immediate future. In our case, Ek = WithinFei(UpToNow(available(l)∧
available(r)), Tt + 2Te) and Mk = SomPi(start) ⇒ (∃t > te : Withinii(Lasts
(eating, t), Tt + 2Te)). The following theorem expresses the local non-starvation
property, whose proof we omit for brevity. Notice that the proof assumes that the
thinking time of each philosopher is larger than twice the eating time: Tt > 2Te.
After all, they are philosophers, not gourmands! (Unless they are Epicureans,
one may argue. . . ). This condition allows to avoid the race conditions.

Theorem 3 (regular eatings rg) .
WithinFei(UpToNow(available(l) ∧ available(r)), Tt + 2Te)
�i (SomPi(start) ⇒ (∃t > te : Withinii(Lasts(eating, t), Tt + 2Te)))

Up to this point, we have proved that AX phil ∧ ASphil ⇒ T Hphil, which
corresponds to step 1 of Section 3.3.

4.2 A Table of Philosophers

The global non-starvation property is expressed by theorem liveness rg below.
It simply states that each philosopher in the array eats regularly, unless he/she
has not started yet. Notice that in our example Eglob = true since the composite
system is closed, and Mglob coincides with the following liveness rg theorem.

Theorem 4 (liveness rg) SomPi(Philosophers[i].start) ⇒
(∃t > te : Withinii(Lasts(Philosophers[i].eating, t), Tt + 2Te))

In Section 4.1 above, we completed step 1 of Section 3.3. Now, let us con-
sider step 2. Each local assumption is discharged by either a global assump-
tion or by a visible theorem or axiom of the modules adjacent to the current
philosopher. Therefore, step 2 is completed without circularities involved, since
thinking duration is an axiom and taking turns[ 2] are both proved directly from
axioms local to each class.

Step 3 is empty in our example, since the only global theorem we want to
prove is theorem liveness rg in T Hrg

dining N . Let us consider step 4, where we
have to prove that each environment assumption Ek is initialized, that is we
have to show that hypothesis 1 of Proposition 1 holds. Since the local theorems
have already been proved without circularities, we can use fork availability to
complete this step. The theorem simply states that the desired property Ek =
WithinFei(UpToNow(available(l)∧ available(r)), Tt + 2Te) always holds, which
subsumes the initialization condition. Step 5 requires to discharge the Ek’s by
means of other formulas, in order to fulfill hypothesis 2 of Proposition 1. Once
again, the theorem fork availability for class k works correctly since it predicates
the validity of the Ek’s over the whole temporal axis. Step 6 is also very simple,
since M = ∀k ∈ {1, . . . , n} : Mk, so that the implication of this step holds
trivially. As a consequence, hypothesis 3 of Proposition 1 is shown to hold.

As discussed above, no circularities arise in proving the local formulas, so we
conclude that theorem liveness rg holds as a consequence of the inference rule of
Proposition 1 and following the steps in Section 3.3.
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4.3 Complexity of the Proofs

Let us briefly evaluate the complexity of the global proof outlined above, using
the proof checker PVS. The PVS proofs of the dining N system required a total
of 926 prover commands; approximately half of them where devoted to the proof
of the theorem regular eatings rg. Let us compare the cost of this verification
with the cost of a non-compositional one.

The basic problem with a non-compositional proof is that we cannot ex-
ploit encapsulation and reuse. Therefore, there is no distinction between local
and global items and everything is “flattened” at the same level of visibility.
In the case of the dining philosopher problem, we can overcome this problem
by “simulating” modularization at the global level. In other words, we have to
carefully parametrize each item with respect to an index which separates differ-
ent “instances” of the philosopher. Moreover, and most importantly, we must
devise a way to replace the use of the � operator by temporally closed formulas
only. This unstructured solution has been implemented; the result has been a
proof of length comparable to the compositional one, but fragmented into more
intermediate lemmas, with more assumptions and more intricate proof depen-
dencies. Another feature that distinguishes the compositional proof from the
non-compositional one is the fact that the former is repetitive while the lat-
ter is intricate. In other words, the compositional proof has a structure made
of several similar parts, indicating that it is indeed simpler to manage for the
human user who can easily understand when previous proof patterns can be
applied again with minor modifications. All in all, even if the number of proof
commands where not dramatically different in the two proofs, the complexity
of the non-compositional one, considering also the mental effort and difficulty
in managing the proof, was much greater. Furthermore, our experience with the
compositional proof of the same property has guided and helped the building of
the non-compositional one: we believe that doing the non-compositional proof
first would have been really hard and time-consuming.

5 Related Works

A compositional analysis technique applies some, possibly formal, method to
infer global properties of a large, complex system through a hierarchical and
iterative process that exploits the system’s modular structure. A general (and
historical) introduction to compositional methods can be found in [6, 7]. Without
aiming at exhaustiveness, this section briefly reviews some of the most important
contributions about compositional reasoning and shows how the approach of this
paper differs from them.

An issue still largely unexplored in the present literature on compositionality
is the consideration of hard real-time aspects, which require a metric model-
ing of time. A first noticeable exception is Ostroff in [17], where the metric
temporal logic RTTL is embedded in a compositional framework. Nonetheless,
the approach is rather different from ours, being focused on refinement aspects
rather than on a posteriori composition that exploits reuse. Furthermore, time
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is treated as a separate variable and is discrete, while in our approach time is
an implicit item of the language and can be either continuous or discrete.

The need for compositionality has become indisputable in the formal methods
community, so that almost every newly introduced formalism encompasses some
sort of compositional technique or permits compositional specifications. However,
to the best of our knowledge, all proposed compositional frameworks are deeply
rooted on some particular, often restrictive semantic assumptions, and depend
explicitly on the underlying computational model. In this regard, formalisms
typically assume either an interleaving semantics (e.g. [1, 9, 16]) or a synchronous
semantics (e.g. [3]) for the concurrent components of the system.

A rather different compositional framework to support the top-down devel-
opment of real-time systems based on logical formulas at the semantic level
is studied by Hooman [13]. In a sense, Hooman’s framework is independent
of semantic assumptions, even if its set-theoretic model of semantic primitives
naturally relates to interleaving semantics models. However, the framework is
focused on the refinement (i.e. decomposition) aspect and basically consists of
an inference rule that permits to deduce that the decomposition of a module into
its refined parts correctly implements the original (unrefined) module. Another
important difference between Hooman’s framework and ours is that the former
does not adopt the rely/guarantee paradigm, and is therefore suitable only to
write specifications of modules who do not rely on a constrained behavior of the
environment to function correctly.

More typical solutions to the problem of formulating a sound rely/guarantee
compositional rule involve the use of an ad hoc operator to write rely/guarantee
specifications so that they satisfy certain specific characterizations.

For example, the above approach is followed by Abadi and Lamport [1], who
analyze the rely/guarantee compositional paradigm using TLA as the reference
specification language. The authors introduce the TLA operator +−� to write
rely/guarantee specifications that can be soundly composed. Notice that our pa-
per also introduced a suitable operator (the time progression operator �) to
write rely/guarantee specifications. The crucial difference is that our time pro-
gression operator is applied in inference rules independently of any assumption
on the semantics of processes and also of any semantic characterization of formu-
las (its application does not need notions such as safety, closure, etc., which are
instead integral part of (among others) Abadi and Lamport’s framework). This
renders our framework purely syntactic and very general. In particular, even if
the inference rule of [1] is usable for general properties, the conditions of the rule
are hard to prove if they are not safety properties; such a distinction does not
apply to a syntactic rule such as ours.

Abadi and Merz [2] propose an abstract generalization of rely/guarantee in-
ference rules, in an attempt to treat compositionality syntactically. To this ex-
tent, a modal operator to write rely/guarantee inference rules is introduced with
minimal semantic assumptions. However, the use of the operator in inference
rules and the consequent soundness proofs are possible only after the abstract
framework is specialized by choosing a semantic model and a computational
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model. On the contrary, in our framework the soundness of the inference rule is
completely proved without assumptions of this kind.

Amla et al. [4] present an abstract compositional framework which can be
considered as a generalization of several concrete compositional frameworks in
the literature. In particular, they succeed in formulating an inference rule which
does not rely on an ad hoc operator to be sound, and is therefore simpler than
others. However, their framework still relies heavily on semantic assumptions,
such as downward closure, on the set of behaviors describing a process. Therefore,
our framework does not fit the models in [4], since it pursues the alternative
(and new) approach of using a rely/guarantee operator, but independently of
any semantic assumptions on the behavior of the components of the system,
according to the axiomatic approach.

6 Conclusions

We presented a compositional framework for the TRIO specification language
that supports verification through automated theorem proving. The framework
is based on a formal notion of composition of TRIO modules, which is used to
prove that the mutual interactions between components of a complex system
guarantee some property for the global application, after the components are
integrated into the system. The compositional rule has been proved sound and
has been applied to the classic example of Dijkstra’s dining philosophers as
a simple, but not simplistic, example. The compositional framework has been
encoded into the logic of the PVS theorem prover.

With respect to other approaches to compositionality in formal methods, our
own emerges as more suitable for real-time modeling, it encompasses both con-
tinuous and discrete time to better model physical processes, and it is conceived
for axiom systems and deductive verification. Therefore, the approach is very
general and abstracts away from specific assumptions about process semantics
and the underlying computational model.

Future work in this line of research will follow three main directions. First,
the framework presented here is being applied to several real-life industrial case
studies to experimentally evaluate its effectiveness. Second, alternative weaker —
or stronger — inference rules will be investigated. In particular, we are exploring
variations and generalizations of the � operator, better suited to be applied
on certain classes of systems, different inference rules which do not use a time
progression operator at all, and complete inference rules (which sacrifice some
simplicity of application). Third, automated support for the framework will be
improved and extended.
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Iterative Circular Coinduction for CoCasl in
Isabelle/HOL

Daniel Hausmann, Till Mossakowski, and Lutz Schröder

BISS, Dept. of Computer Science, University of Bremen

Abstract. Coalgebra has in recent years been recognized as the frame-
work of choice for the treatment of reactive systems at an appropriate
level of generality. Proofs about the reactive behavior of a coalgebraic
system typically rely on the method of coinduction. In comparison to
‘traditional’ coinduction, which has the disadvantage of requiring the
invention of a bisimulation relation, the method of circular coinduction
allows a higher degree of automation. As part of an effort to provide proof
support for the algebraic-coalgebraic specification language CoCasl, we
develop a new coinductive proof strategy which iteratively constructs a
bisimulation relation, thus arriving at a new variant of circular coinduc-
tion. Based on this result, we design and implement tactics for the the-
orem prover Isabelle which allow for both automatic and semiautomatic
coinductive proofs. The flexibility of this approach is demonstrated by
means of examples of (semi-)automatic proofs of consequences of Co-
Casl specifications, automatically translated into Isabelle theories by
means of the Bremen heterogeneous Casl tool set Hets.

Introduction

Coalgebra is emerging as a standard unifying framework for the specification
of reactive systems [11], complementing the use of universal algebra for the
specification of the functional correctness of programs. Following this paradigm,
several coalgebraic specification languages have recently been designed, e.g. the
Coalgebraic Class Specification Language CCSL, which is geared towards ob-
ject oriented programs, and the algebraic-coalgebraic specification language Co-
Casl [7], which extends the standard algebraic specification language Casl [1, 8]
and thus allows not only the specification of both functional and reactive require-
ments, but also the intercombination of inductive datatypes and coinductive
process types.

This work forms part of an effort to provide proof support for CoCasl. To
this end, an existing embedding of Casl into the semiautomatic theorem prover
Isabelle/HOL [9] has been extended to CoCasl, so that proofs about CoCasl
specifications can now be conducted in a well-developed higher order logical
environment. This embedding is the basis for the development of automatic
tactics that serve to simplify the actual proof work.

In the same way as proofs about algebraic datatypes typically involve induc-
tion, the standard proof method for coalgebraic process types is coinduction. The
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coinduction principle states that bisimilar, i.e. observationally indistinguishable
states are actually equal. While inductive proofs of simple assertions are usually
easy to mechanize, the automatization of coinduction is faced with the prob-
lem that standard coinduction requires the invention of a bisimulation relation.
A variant of coinduction that lends itself more easily to mechanization is the
method of circular coinduction [10], which works by ‘reducing the claim to it-
self’ adhering to certain restrictions in the permissible proof steps. Here, we
introduce an implementation of a related proof method where the bisimulation
is built up inductively from the proof goal. This process may be performed either
automatically or, in cases where this fails, semiautomatically, with the inductive
construction guided by the user by means of specialized tactics. The inductive
completion process has the advantage that specifications are not limited to (con-
ditional) equational logic, as with circular coinduction (as realized in BOBJ).

The use of this method is illustrated by means of example specifications in
CoCasl. It turns out that many simple goals can indeed be solved automati-
cally, and that more complicated goals require only a moderate amount of user
interaction.

The material is organized as follows. Basic facts and notions concerning coal-
gebra and coinduction are reviewed in Sect. 1. Section 2 gives a brief introduction
to CoCasl. The method of the iterative construction of a bisimulation, called
iterative coinduction, is introduced in Sect. 3. Section 4 discusses the implemen-
tation of this method in Isabelle/HOL and the example proofs.

1 Coalgebra and Coinduction

We now briefly recall some basic notions from coalgebra.

Definition 1 (coalgebra). Let C be a category, and let T : C → C be a
functor. A T -coalgebra (A, α) (or, somewhat imprecisely, just A) consists of an
object A of C and a morphism α : A → TA. A homomorphism between two T -
coalgebras (A, α) and (B,β) is a morphism h : A → B such that β◦h = (Th)◦α.
A T -coalgebra Z is called final if for each T -coalgebra A, there exists a unique
homomorphism A → Z.

Final coalgebras admit corecursive definitions: given an object A of C, a
function f : A → Z into the final T -coalgebra Z can be defined by exhibiting
a T -coalgebra structure α on A. The function f : A → Z thus defined is then
the unique homomorphism (A, α) → Z. Examples of corecursive definitions are
given below.

There is also a principle of coinductive proof which relies on a coalgebraic
notion of bisimulation and is particularly suitable for proving properties of core-
cursively defined functions.

Definition 2 (bisimulation and full abstraction). Let C be a category. A
relation between two objects A and B of C is a subobject R of A×B; equivalently,
R is given by the two projection morphisms π1 : R → A and π2 : R → B. If
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A and B are coalgebras for a functor T : C → C, then such a relation R is
called a bisimulation if there exists a T -coalgebra structure on R that makes π1
and π2 into coalgebra homomorphisms. A coalgebra A is called fully abstract
if every bisimulation on A is contained in the identity relation, i.e. the diagonal
Δ : A → A×A.

In the special case C = Set, the notion of relation as defined above coincides
with the usual notion. In this case, elements of coalgebras are called bisimilar if
there exists some bisimulation that relates them. Full abstractness of A means
that we have the following coinduction proof principle on A:

If x and y are bisimilar elements of A, then x = y.

As indicated in the introduction, this proof principle, while indeed essentially
dual to induction, carries the disadvantage that a bisimulation R relating x and
y must actually be invented. Coinduction is always available on final coalgebras,
and hence on their subcoalgebras:

Lemma 3. Final coalgebras are fully abstract.

Example 4. Let T be the set functor given by TX = A×X for a fixed set A. The
final T -coalgebra Z = (AIN, 〈hd, tl〉 : AIN → A×AIN) has the set AIN of all infinite
streams of elements from A as its carrier and the combined head and tail function
as its coalgebra structure. We can define corecursive functions odd, even : AIN →
AIN and zip : AIN×AIN → AIN by the equations shown in Fig. 1 below (where AIN

corresponds to Stream[Elem]). In the case of odd, these equations correspond to
requiring that odd is a homomorphism (AIN, 〈hd, tl◦tl〉) → Z, i.e. to commutation
of the diagrams

AIN odd� AIN AIN odd� AIN

A

hd
�

id
� A

hd
�

AIN

tl ◦ tl
� odd� AIN

tl
�

,

similarly for even and zip. By Lemma 3, the claim that zip(odd(s), even(s)) = s
for all s ∈ AIN can be proved by coinduction as follows. We have to define a
bisimulation R which relates zip(odd(s), even(s)) and s for all s ∈ AIN. To this
end, we put R = {(zip(odd(s), even(s)), s) | s ∈ AIN}. Showing that R is a bisim-
ulation amounts to proving that s R t implies hd(s) = hd(t) and tl(s) R tl(t).
The former goal is solved trivially by just applying the definitions. The latter is
shown as follows:

tl(zip(odd(s), even(s))) = zip(even(s), tl(odd(s)))
= zip(even(s), odd(tl(tl(s))))
= zip(odd(tl(s)), even(tl(s))))
R tl(s),

where we have used the lemma

even = odd ◦ tl.
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This proof illustrates two difficulties w.r.t. mechanizability: not only did we have
to invent the said lemma, we also had to apply this equation in two different
directions during the calculation of tl(zip(odd(s), even(s))). This point will be
discussed in more detail below.

A further difficulty appears in the following example. Let bzip : AIN ×AIN ×
Bool → AIN, where Bool is the set {",⊥} of truth values, be corecursively
defined by

hd(bzip(s, t, b)) =

{
hd(s) if b

hd(t) otherwise

tl(bzip(s, t, b)) =

{
bzip(tl(s), t,¬b) if b

bzip(s, tl(t),¬b) otherwise.

Then the equation zip(s, t) = bzip(s, t,") can be proved by coinduction. How-
ever, the initial guess at a bisimulation, R = {(zip(s, t), bzip(s, t,")) | s, t ∈
AIN}, in fact fails to be a bisimulation. A bisimulation is obtained only by the
improved guess R′ = R ∪ {(zip(t, s), bzip(s, t,⊥)) | s, t ∈ AIN}.

Circular Coinduction

A coinduction proof principle similar to the one described above has also been in-
troduced for behavioral specifications in the framework of hidden algebra. Roşu
[10] has noted that coinduction based on behavioral rewriting loops for proof
goals like zip(odd(s), even(s)) = s. He has therefore introduced circular coin-
duction, a proof rule that avoids looping by stopping whenever a subgoal is
reached that is an instance of a proof goal that has already been decomposed
using the observers. Circular coinduction has been implemented in the BOBJ
system [10]. Our iterative coinduction method introduced below is very similar
to circular coinduction, the essential difference being that it is tailored towards
integration in a semiautomatic theorem prover like Isabelle (while a direct inte-
gration of the circular coinduction rule into Isabelle would actually lead to less
automation because true narrowing instead of just rewriting would be needed).

2 CoCasl

The algebraic-coalgebraic specification language CoCasl has been introduced
in [7] as an extension of the standard algebraic specification language Casl. For
the basic Casl syntax, the reader is referred to [1, 8]. We briefly explain the
CoCasl features relevant for the understanding of the present work using the
example specification shown in Fig. 1.

Dually to Casl’s datatype construct type, CoCasl offers a cotype con-
struct which defines coalgebraic process types; it is formally proved in [7] that
one can indeed define for each cotype signature a functor T such that models of
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spec Stream1 [sort Elem] =
cofree cotype

Stream ::= cons(hd : Elem; tl : Stream)
ops odd , even : Stream[Elem] → Stream[Elem];

zip : Stream[Elem] × Stream[Elem] → Stream[Elem];
vars s, s1 , s2 : Stream[Elem];

• hd(odd(s)) = hd(s)
• tl(odd(s)) = odd(tl(tl(s)))
• hd(even(s)) = hd(tl(s))
• tl(even(s)) = even(tl(tl(s)))
• hd(zip(s1 , s2 )) = hd(s1 )
• tl(zip(s1 , s2 )) = zip(s2 , tl(s1 ))

then %implies
var s : Stream[Elem]
• zip(odd(s), even(s)) = s

end

Fig. 1. CoCasl specification of streams

the cotype correspond to T -coalgebras. A simple example is the cotype Stream
defined in Fig. 1. Like a type declaration, a cotype declaration is just a short way
of declaring operations; specifically, the declaration of Stream produces two op-
erations hd : Stream→ Elem and tl : Stream→ Stream. Models of the cotype
Stream are essentially coalgebras for the functor λX. Elem×X.

Cotypes can be qualified by keywords expressing further constraints. In par-
ticular, the keyword cofree qualifying the cotype of streams in Fig. 1 has the
effect of restricting the models of Stream to the final coalgebra (uniquely up to
isomorphism), i.e. the set of streams. In particular, one thus has a coinduction
principle for Stream, which we could also express by using the weaker con-
straint cogenerated instead of cofree. Moreover, the corecursive definitions of
the functions odd, even, and zip indeed constitute a definitional extension, i.e.
do not actually affect the model class.

We now recall some notions from the formal semantics of Casl and CoCasl:
A many-sorted Casl signature Σ = (S,TF ,PF , P ) consists of a set S of

sorts, two S∗ × S-indexed sets TF = (TFw,s) and PF = (PFw,s) of total and
partial operation symbols, and an S∗-indexed set P = (Pw) of predicate symbols.
Function symbols in TFw,s are written f : w → s.

Models are many-sorted partial first order structures, interpreting total (par-
tial) function symbols as total (partial) functions and predicate symbols as rela-
tions. Homomorphisms between such models are so-called weak homomorphisms.
That is, they are total as functions, and they preserve (but do not necessarily
reflect) the definedness of partial functions and the satisfaction of predicates.

Definition 5 (Σ-cogeneration constraint). Given a signature Σ =
(S,TF ,PF , P ), a cogeneration constraint Θ = (S̄, F̄ ) over Σ consists of a set of
observable sorts S̄ ⊂ S and a set of observer operation symbols F̄ ⊂ TF ∪ PF .
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Definition 6 (Observation functional). Let Θ = (S̄, F̄ ) be a Σ-cogeneration
constraint. The observation functional ObsΘ computes the image of a relation
under all observers with observable result. Formally, if M is a Σ-model and
R ⊂ |M | × |M | is an S-sorted binary relation, ObsΘ(R) = {(fM (x), fM (y)) |
(x, y) ∈ R, f ∈ F̄w,s, s ∈ S̄}.

Definition 7 (Transition functional). Let Θ = (S̄, F̄ ) be a Σ-cogeneration
constraint. The transition functional T ransΘ computes the image of a relation
under all observers with non-observable result. Formally, for R ⊂ |M | × |M |,
TransΘ(R) = {(fM (x), fM (y)) | (x, y) ∈ R, f ∈ F̄w,s, s /∈ S̄}.

Definition 8 (Θ-bisimulation). Let M be a Σ-model. A binary relation R on
M is called a Θ-bisimulation if

ObsΘ(R) ⊂ Δ and TransΘ(R) ⊂ R

for the Σ-cogeneration constraint Θ (Δ denotes the identity relation). Two ele-
ments of M are called Θ-bisimilar if they are in relation for some Θ-bisimulation.
The constraint Θ is satisfied in a Σ-model M (written M � Θ) if each Θ-
bisimulation on M is contained in the equality relation (this model M is then
also called cogenerated by Θ).

If the cogeneration constraint Θ corresponds to the functor T (cf. [7]), then the
notion of a bisimulation for T -coalgebras and the notion of a Θ-bisimulation co-
incide. The coinduction proof principle from Definition 2 thus takes the following
form:

Let Θ be a Σ-cogeneration constraint and let R be a Θ-bisimulation.
Then (x, y) ∈ R ⇒ x = y (i.e. R ⊂ Δ).

Thus it suffices to exhibit a Θ-bisimulation R which relates two elements x
and y of a cogenerated model of Σ in order to show that x = y. The difficulty
is, again, in finding a suitable R.

Remark 9. The satisfaction of cogeneration constraints is defined in [7] in terms
of co-congruences rather than in terms of bisimulation relations. For arbitrary
functors, the arising coinduction principle is stronger than coinduction principles
based on bisimulation, so that the method of coinductive proof described in
Sect. 1 remains sound. For the more restricted functors considered here, the two
notions are equivalent.

3 Iterative Construction of the Bisimulation

A first approach to the construction of a bisimulation R in coinductive proofs is
as follows. Given a proof goal ∀X. t1 = t2,
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1. Let R = {(x, y) | ∃X. x = t1 ∧ y = t2} (following [2], we call R the current
trial bisimulation).

2. Try to prove ObsΘ(R) ⊂ Δ and TransΘ(R) ⊂ R (i.e. try to show that R is
a Θ-bisimulation).

3. If this succeeds, the proof is finished.

However, this approach will often fail:

Example 10. Consider again the example of infinite streams AIN of elements
from A defined using the functor TX = A × X. The corresponding signa-
ture is Σ = ({Elem, Stream}, {hd, tl}, ∅, ∅). The observation functional for the
Σ-cogeneration constraint Θ = ({Elem}, {hd, tl}) is defined as ObsΘ(R) =
{(hd(x), hd(y)) | (x, y) ∈ R}, the transition functional is defined as TransΘ(R) =
{(tl(x), tl(y)) | (x, y) ∈ R}. The attempt to prove ∀s . zip(odd(s), even(s)) = s
from Θ fails if the above algorithm is used:

1. Let R = {(x, y) | ∃s . x = zip(odd(s), even(s)) ∧ y = s}
2. Try to prove ObsΘ(R) ⊂ Δ and TransΘ(R) ⊂ R. In order to prove the first

inclusion, we have to prove ∀s . hd(zip(odd(s), even(s))) = hd(s), which can
be done by just rewriting the left term. For a proof of the second inclusion,
one would have to prove ∀s. tl(zip(odd(s), even(s)))R tl(s), which is indeed
true. However, tl(zip(odd(s), even(s))) = zip(even(s), odd(tl(tl(s)))) and the
latter term cannot be simplified any further, so that a proof attempt by mere
rewriting fails.

It is hence necessary to use a ‘larger’ relation which explicitly contains
(zip(even(s), odd(tl(tl(s)))), tl(s)) for all s (there is no harm in the fact that
these pairs are indeed already contained in the original relation). A similar situ-
ation arises in the proof of the identity zip(s, t) = bzip(s, t,") (cf. Example 4),
where the original trial bisimulation actually fails to be a bisimulation and hence
needs to be properly extended.

A more effective proof method is the iterative extension of the trial bisimula-
tion: First one tries to prove that the current trial bisimulation is a bisimulation,
and if this fails, one adds a new pair to the relation and again tries to show that
the new relation is a bisimulation. This is done repeatedly until the proof of the
fact that the current trial bisimulation is a bisimulation succeeds.

We now present an algorithm called iterative coinduction that uses this ap-
proach. Assuming the cogeneration constraint Θ, the proof goal ∀X. t1 = t2 is
dealt with as follows.

1. Let R = {(x, y) | ∃X. x = t1 ∧ y = t2}, and let n = 0.
2. Let Rn = R ∪ TransΘ(Rn+1), with Rn+1 a metavariable which can later be

instantiated.
3. Try to prove ObsΘ(R0) ⊂ Δ and TransΘ(R0) ⊂ R0 by instantiating Rn+1

with ∅ (i.e. try to prove that R0 is bisimulation).
4. If this does not succeed, then set n to n + 1 and continue with 2.
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5. Otherwise conclude by the coinduction proof principle that ∀X.t1 = t2, since
∀X. t1R0t2.

Example 11. The proof attempt for ∀s . zip(odd(s), even(s)) = s succeeds if
the above algorithm is used:

1. Let R = {(x, y) | ∃s . x = zip(odd(s), even(s)) ∧ y = s}, let n = 0.
2. Let R0 = R ∪ TransΘ(R1), with R1 a metavariable.
3. Try to prove ObsΘ(R0) ⊂ Δ and TransΘ(R0) ⊂ R0 by instantiating R1 with
∅. As discussed above, the first inclusion can be discharged by rewriting,
while a rewriting proof of the second inclusion fails, although the inclusion
does hold.

4. Thus set n to 1 and let R1 = R ∪TransΘ(R2) with R2 a metavariable (now
R0 = R ∪ TransΘ(R ∪ TransΘ(R2))).

5. Try to prove ObsΘ(R0) ⊂ Δ and TransΘ(R0) ⊂ R0 by instantiating R2 with
∅. Since ObsΘ and T ransΘ distribute over unions, the following proof goals
arise:

ObsΘ(R) ⊂ Δ T ransΘ(R) ⊂ R ∪ T ransΘ(R)
ObsΘ(T ransΘ(R)) ⊂ Δ T ransΘ(T ransΘ(R)) ⊂ R ∪ T ransΘ(R)

The goal for ObsΘ(R) was already discharged in step 3, and the goal for
T ransΘ(R) is trivial. The goal for ObsΘ(T ransΘ(R)) can be discharged by
rewriting the left side. In order to establish the last inclusion, we have to
prove that for all s, tl(tl(zip(odd(s), even(s))))R0 tl(tl(s))). Now

tl(tl(zip(odd(s), even(s)))) = tl(zip(even(s), odd(tl(tl(s)))))
= zip(odd(tl(tl(s))), even(tl(tl(s)))))
R tl(tl(s)),

which establishes the last goal.
6. We conclude by coinduction that ∀s. zip(odd(s), even(s)) = s.

The method of iterative coinduction is thus able to complete the proof. Fur-
thermore, the method succeeds in proving the theorem ∀s1, s2. zip(s1, s2) =
bzip(s1, s2,") from Example 4. During the proof, the algorithm adds the
pairs (zip(s2, tl(s1)), bzip(tl(s1), s2,⊥)) for all s1, s2 to the trial bisimulation
R = {(zip(s1, s2), bzip(s1, s2,")}. These pairs constitute an actual extension of
the trial bisimulation, i.e. they were (in contrast to the situation in the proof of
∀s. zip(even(s), odd(s)) = s) not previously contained in the relation.

Notice that the above coinduction method is not guaranteed to terminate, i.e. it
is possible that the method just keeps adding new pairs to the trial bisimulation.
Such looping may have different causes: firstly, of course, if the proof goal is not
a consequence of the considered specification, the method will not be able to
prove it and hence fail to terminate (however, if the inclusion ObsΘ(R0) ⊂ Δ
becomes false at some stage, then the method can actually be used to disprove
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the incorrect goal). The algorithm may fail to terminate also on correct goals in
cases where the iterative construction of a bisimulation requires infinitely many
steps (see [2] for examples). Such goals can typically be solved by generalization:
A more general proof goal is stated, which one may then, in turn, attempt to
solve with the algorithm.

4 Iterative Coinduction in Isabelle/HOL

As part of the Bremen heterogeneous tool set Hets [6, 5], a translation of Co-
Casl specifications into Isabelle/HOL theories has been implemented in order
to allow for the interactive proving of properties of reactive systems (see e.g.
Figure 2). This includes a translation of cogeneration constraints, so that coin-
ductive proofs about CoCasl specifications in Isabelle/HOL are made possi-
ble in principle. Making coinductive proofs practically feasible requires a set of
custom-tailored proof procedures, called tactics in Isabelle. Specifically, tactics
have been implemented to support the method of iterative coinduction as in-
troduced in the previous section. The iterative-coinduction tactic assembles the
smaller tactics into one complex tactic which succeeds in proving a relatively
large variety of different theorems over different cotypes automatically. In cases
where this fails, it is usually possible to construct simple semi-manual proofs
by means of the semiautomatic tactics provided by the implementation. The
following automatic and semiautomatic tactics have been implemented:

– The coinduction tactic: Let the proof goal be ∀X. t1 = t2. This tactic then
automatically chooses the basic relation R such that (x, y) ∈ R ⇔ ∃X. x =
t1 ∧ y = t2. The appropriate cogeneration axiom is applied afterwards while
instantiating R0 with R∪Trans(R1) where R1 is an uninstantiated metavari-
able. The coinduction tactic generates two subgoals: the first subgoal states
that R0 is a bisimulation, and the second states that (t1, t2) ∈ R0.

– The init tactic: The init tactic automatically proves (t1, t2) ∈ R0 and thus
solves the second of the two subgoals generated by the coinduction tactic.

– The breakup tactic: The breakup tactic splits a subgoal of the schematic
form (x, y) ∈ (R∪Trans(Rn)) ⇒ C for some natural number n and formula
C up into two subgoals (x, y) ∈ R ⇒ C and (x, y) ∈ Trans(Rn) ⇒ C.

– The close-or-step tactic: This tactic tries to solve the current subgoal by
simplification while speculating that Rn may be chosen as ∅ (this attempt
is also called the close-part of the tactic). If this fails, the tactic instantiates
Rn with R ∪ Trans(Rn+1) (this is also called the step-part of the tactic).

– The force-finish tactic: The force-finish tactic instantiates Rn with the
empty predicate and afterwards applies simplification steps in order to solve
the last remaining subgoal.

– The iterative-coinduction tactic: This tactic combines the previous five
tactics in order to allow for automatic proofs.
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4.1 Examples

We will now demonstrate the use of the tactics described above by several ex-
ample proofs.

Recall the CoCasl specification of streams of type Elem as shown in Fig. 1.
This specification contains corecursive definitions of functions odd and even,
which given a stream s return the stream of elements of s at odd or even positions,
respectively. Furthermore, a function zip is defined which merges two streams s1
and s2 into a stream which alternatingly contains elements from s1 and s2. Fi-
nally, the specification contains a theorem (marked as such by the Casl semantic
annotation %implies) stating that for all streams s, zip(odd(s), even(s)) = s.

typedecl "Elem"

typedecl "Stream"

consts

"hd" :: "Stream => Elem"

"tl" :: "Stream => Stream"

"even" :: "Stream => Stream"

"zip" :: "Stream => Stream => Stream"

"odd" :: "Stream => Stream"

axioms

odd hd: "!!s::Stream.(hd(odd s)) = (hd s)"

odd tl: "!!s::Stream.(tl(odd s)) = odd(tl(tl s))"

even hd: "!!s::Stream.(hd(even s)) = (hd(tl s))"

even tl: "!!s::Stream.(tl(even s)) = even(tl(tl s))"

zip hd: "!!s1::Stream.!!s2::Stream.(hd(zip s1 s2)) = (hd s1)"

zip tl: "!!s1::Stream.!!s2::Stream.(tl(zip s1 s2)) = zip s2 (tl s1)"

ga cogenerated Stream: "!! R :: Stream => Stream => bool.

!! u :: Stream. !! v :: Stream. ! x :: Stream. ! y :: Stream.

R x y --> (hd x = hd y & R (tl x) (tl y)) ==> R u v ==> u = v"

theorem Stream Zip: "!! s :: Stream . zip (odd s) (even s) = s"

Fig. 2. Isabelle translation of the CoCasl specification of streams

Figure 2 shows the automatic translation of this CoCasl specification into
an Isabelle theory, generated by Hets. This theory first declares the types Elem|
and Stream| together with the observers and additional functions odd|, even|
and zip|. This is followed by axioms arising from the coinductive function defini-
tions. Let ΘStr = ({Elem}, {hd, tl}). The axiom ga cogenerated Stream states
that every ΘStr-bisimulation R is contained in the equality relation. This ax-
iom constitutes the coinduction proof principle on which the subsequent proofs
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theorem Stream Zip: "!! s :: Stream . zip (odd s) (even s) = s"

apply(coinduction)

apply(init)

apply(breakup)

apply(close or step)

apply(force finish)

done

theorem Stream Zip2: "!! s :: Stream . zip (odd s) (even s) = s"

apply(iterative coinduction)

done

Fig. 3. Two proofs of zip(odd(s), even(s)) = s

are based. (The existence part of the finality constraint expressed by the key-
word cofree is irrelevant for coinductive proofs and presently ignored by the
translation.) The theorem zip(odd(s), even(s)) = s is translated as an open
goal. Figure 3 shows two proofs of this theorem using the tactics for iterative
coinduction. The first proof uses the semiautomatic tactics in order to con-

spec BinTree1 [sort Elem] =
cofree cotype BinTree ::= (left : BinTree;node : Elem; right : BinTree)
op mirror : BinTree[Elem] → BinTree[Elem];
vars t : BinTree[Elem];

• left(mirror(t)) = mirror(right(t))
• node(mirror(t)) = node(t)
• right(mirror(t)) = mirror(left(t))

then %implies
var t : BinTree[Elem]
• mirror(mirror(t)) = t

end

Fig. 4. CoCasl specification of infinite binary trees

duct the proof step by step. The coinduction tactic automatically applies the
ga cogenerated Stream axiom to the current goal, yielding two new subgoals by
instantiating the relation variable in the axiom with R∪TransΘStr

(R1). The first
subgoal states that R0 = {(x, y) | ∃s :: Stream. x = zip(odd(s), even(s)) ∧ y =
s} ∪ TransΘStr

(R1) is a ΘStr-bisimulation; the second subgoal states that R0
relates zip(odd(s), even(s)) and s. The init tactic solves this second (trivial)
subgoal and transforms the first subgoal into a form to which the breakup tactic
can be applied.
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After the execution of the breakup tactic, there are two new subgoals. The first
subgoal states that R is mapped into R0 under hd and tl, i.e. that hd(x) = hd(y)
for any (x, y) ∈ R and that (tl(x), tl(y)) ∈ R0 for (x, y) ∈ R; the second subgoal
makes the corresponding statement for T ransΘStr

(R) in place of R. The close-or-
step tactic fails to prove the first subgoal by simplification, and thus applies the
step-part, instantiating R1 with R ∪ TransΘStr

(R2) and automatically succeeds
by assuming R2 = ∅ to show that R0 = R ∪ TransΘStr

(R) is closed under
hd and tl and is hence a bisimulation. The remaining subgoal is trivialized by
applying the force-finish tactic. The proof is thus finished and can be completed
by executing done.

The second proof uses the automatic iterative-coinduction tactic which com-
bines the smaller tactics and finishes the proof without requiring user interaction.

typedecl "BinTree"

typedecl "Elem"

consts

"cons" :: "BinTree => Elem => BinTree => BinTree"

"left" :: "BinTree => BinTree"

"mirror" :: "BinTree => BinTree"

"node" :: "BinTree => Elem"

"right" :: "BinTree => BinTree"

axioms

mirror left: "!!t::BinTree.(left(mirror t)) = (mirror(right t))"

mirror node: "!!t::BinTree.(node(mirror t)) = (node t)"

mirror right: "!!t::BinTree.(right(mirror t)) = (mirror(left t))"

ga cogenerated BinTree: "!! R :: BinTree => BinTree => bool.

!! u :: BinTree. !! v :: BinTree. ! x :: BinTree. ! y :: BinTree.

((R x) y) --> (((R (left x)) (left y)) & (node x) = (node y) &

((R (right x)) (right y))) ==> ((R u) v) ==> u = v"

theorem BinTree Mirror: "!! t :: BinTree. (mirror (mirror t)) = t"

Fig. 5. Isabelle translation of the CoCasl specification of infinite binary trees

A CoCasl specification for the cotype of infinite binary trees with nodes la-
belled in a set Elem, together with a corecursively defined function mirror which
keeps the value of the current node and replaces the left subtree with the mir-
rored right subtree and the right subtree with the mirrored left subtree, is shown
in Fig. 4. Figure 5 contains the corresponding Isabelle theory obtained by auto-
matic translation in Hets. The axiom ga cogenerated BinTree states that any
ΘTree-bisimulation is contained in the equality relation. The proof goal arising by
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translation of the %implies part of the CoCasl specification states that mirror
is self-inverse, i.e. that for all infinite binary trees t, mirror(mirror(t)) = t.

Two proofs of this theorem are shown in Fig. 6. The proofs use the tactics
in an equivalent way as the proofs in Fig. 3.

theorem BinTree Mirror: "!! t :: BinTree. (mirror (mirror t)) = t"

apply(coinduction)

apply(init)

apply(breakup)

apply(close or step)

apply(finish)

done

theorem BinTree Mirror2: "!! t :: BinTree. (mirror (mirror t)) = t"

apply(iterative coinduction)

done

Fig. 6. Two proofs of mirror(mirror(t)) = t

Table 1 shows a selection of theorems which have been proved using the
iterative-coinductive proof tactics in a similar manner as in the examples above1.
The depth of a coinductive proof is the number of iterations required in order
to arrive at a bisimulation (including the initial guess). The example goals con-
cerning streams, largely taken from [2], make use of further corecursively de-
fined functions: swap(a, b) is the stream (a, b, a, b, . . . ); const(a) is the stream
(a, a, a, . . . ); iterate(f, a) is the stream (a, f(a), f2(a), . . . ); and inflist(a, g, f)
is the stream (g(a), g(f(a)), g(f2(a)), . . . ). The bswitch function interchanges
even and odd positions in the stream it receives as its first argument, starting
at the first or the second position depending on its boolean second argument.
The function bzip is defined as in Example 4. Other function names should be
self-explanatory.

The proofs of the theorems zip(s, t) = bzip(s, t,") and zip(s, t) =
bswitch(zip(t, s),") are typical examples where the trial bisimulation has to
be extended by pairs not previously contained in it; the additional pairs are
correctly ‘guessed’ by the iteration mechanism. As can be seen from Table 1,
the proofs presently have to be conducted at the semiautomatic level; however,
the proofs do not actually require substantial user interaction, so that further
fine-tuning of the iterative-coinduction tactic is expected to produce a fully au-
tomatic proof of these goals.

The theorems on bitstreams shown in Table 1 mention a function flop :
Bit → Bit which toggles bits, and a function flip : BitStream → BitStream

1 Proof scripts and tactic implementations available under http://www.informatik.

uni-bremen.de/~hausmann/cocasl
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Table 1. Theorems proved by iterative coinduction in Isabelle

Cotype Theorem Depth Automatic

Streams zip(even(s), odd(s)) = s 2 Yes
zip3(first(s), second(s), third(s)) = s 3 Yes
zip4(one(s), two(s), three(s), four(s)) = s 4 Yes
zip(const(a), const(b)) = swap(a, b) 2 Yes
zip(s, t) = bzip(s, t,�) 2 No
zip(even(s), odd(s)) = bswitch(s,�) 2 No
zip(s, t) = bswitch(zip(t, s),�) 2 No
odd(zip(s, t)) = s 1 Yes
even(zip(s, t)) = t 1 Yes
iterate(f, f(a)) = map(f, iterate(f, a)) 1 Yes
const(a) = odd(swap(a, f)) 1 Yes
const(a) = map(identity, const(a)) 1 Yes
inflist(a, identity, identity) = const(a) 1 Yes
map(g, iterate(f, a)) = inflist(a, g, f) 1 Yes
map(compose(f, g), l) = map(f, map(g, l)) 1 Yes
const(f(a)) = map(f, const(a)) 1 Yes
const(a) = even(const(a)) 1 Yes
const(a) = iterate(identity, a) 1 Yes
const(a) = swap(a, a) 1 Yes

BitStreams flip(b) = map(flop, b) 1 No
tick = flip(tock) 1 Yes
flip(flip(b)) = b 1 Yes

NatStreams streamadd(s, s) = map(double, s) 1 Yes
streamadd(s, t) = streamadd(s, t) 1 Yes

Binary Trees mirror(mirror(t)) = t 1 Yes
TreeStreams swap(mirror(mirror(t)), t) = const(t) 2 No

which toggles all bits in a stream; the corecursive definition of flip uses a case
distinction over hd(b) in the clause for hd(flip(b)), i.e. does not use flop. The
theorem flip(b) = map(flop, b) for all bit-streams b has to be proved semiauto-
matically because explicit case distinction needs to be performed in the course
of the proof (an approach for further automation of proofs which involve case
distinction is described in [4]). Using this theorem in simplification, the goals
tick = flip(tock) (where tick and tock are the two alternating bitstreams) and
flip(flip(b)) = b can be proved automatically.

Another point where the fully automatic tactic fails is nested coinduction.
An example is the theorem swap(mirror(mirror(t)), t) = const(t) for all infinite
trees t, where during a coinductive proof over streams, a second coinductive
proof – this time over trees – becomes necessary. This requires a semiautomatic
proof in which the user explicitly tells the system when to start the second
coinductive proof. The iterative coinduction tactics automatically choose the
right coinduction principle needed in the current situation.
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5 Conclusion

We have proposed a method of coinduction by iterative construction of bisim-
ulations. This method, which postulates only the standard coinduction princi-
ple, produces proofs that are similar in spirit to circular induction. As part of
the proof support for the algebraic-coalgebraic specification language CoCasl,
corresponding proof tactics have been implemented in Isabelle/HOL; iterative
coinductive proofs are supported by both an all-out automatic tactic and a set of
semiautomatic tactics that allow user-guided initiation, continuation, and com-
pletion of the iterative construction.

Compared with circular coinduction as realized in BOBJ [10], our approach is
suitable for specifications written in full first-order (and even higher-order) logic,
not just conditional equations. Moreover, while the degree of automation that we
achieve is comparable to that of BOBJ [10] and CoClam [3], the availability of
semiautomatic tactics means that user interaction may help to complete proofs
that fail with a completely automatic proof procedure (in particular, missing
lemmas appear as open subgoals and can be proved on-the-fly, possibly with
another coinduction; cf. the T reeStreams example). Last but not least, the
realisation of circular coinduction as a proof tactic in Isabelle/HOL means that
correctness of the implementation only relies on the rather small and long-tested
kernel of Isabelle.

Example proofs have been conducted on CoCasl specifications, automat-
ically translated into Isabelle theories by the Bremen heterogeneuous tool set
Hets [5, 6]. Simple proof goals can typically be discharged automatically; typical
features that require user interaction are case distinction and nested coinduc-
tion. The further automation of case distinction, as in BOBJ, is not expected to
cause fundamental difficulties.

Continued work on the CoCasl proof environment includes fine-tuning the
automatic proof tactics and extending the implementation (which currently only
works for the single-sorted case) to many-sorted coinduction and datatype-valued
observers, as well as developing proof support for advanced CoCasl features,
in particular CoCasl’s modal logic and structured cofree specifications.
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SE-412 96 Göteborg, Sweden
woj@cs.chalmers.se

Abstract. We present how common JAVA CARD security properties can
be formalised in Dynamic Logic and verified, mostly automatically, with
the KeY system. The properties we consider, are a large subset of prop-
erties that are of importance to the smart card industry. We discuss
the properties one by one, illustrate them with examples of real-life, in-
dustrial size, JAVA CARD applications, and show how the properties are
verified with the KeY Prover – an interactive theorem prover for JAVA

CARD source code based on a version of Dynamic Logic that models the
full JAVA CARD standard. We report on the experience related to formal
verification of JAVA CARD programs we gained during the course of this
work. Thereafter, we present the current state of the art of formal veri-
fication techniques offered by the KeY system and give an assessment of
interactive theorem proving as an alternative to static analysis.

1 Introduction

JAVA CARD [8] is a technology designed to incorporate JAVA in smart card pro-
gramming. The main ingredient of this technology is the JAVA CARD language
specification, which is a stripped down version of JAVA. In recent years JAVA

CARD technology gained interest in the formal verification community. The two
main reasons for this are: (1) JAVA CARD applications are safety and security
critical, and thus a perfect target for formal verification, (2) due to the relative
language simplicity JAVA CARD is also a feasible target for formal verification.

In this paper we show how common JAVA CARD security properties can be
formalised in the Dynamic Logic used in the KeY system and proved with the
KeY interactive theorem prover (the background of the KeY project is given in
Sect. 2). The properties in question are a rather large subset of properties that
are of interest to the smart card industry [18]. We demonstrate the formalisa-
tion and verification of the properties on two real-life JAVA CARD applets (the
case studies are described in Sect. 3). After giving the detailed description of
the properties we formalised and proved (Sect. 4), we report on the experience
we gained during the course of this work and analyse the main difficulties we
encountered. In an earlier paper [12] we reported on the verification of trans-
actions related safety properties based on a somewhat simplified example of a

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 357–371, 2005.
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JAVA CARD purse applet. We proposed the approach of design for verification,
where we argue that certain precautions have to be taken into account during
the design and coding phase to make verification feasible. In this work however,
we concentrate on source code verification of already existing JAVA CARD appli-
cations without any simplifications whatsoever, and we discuss wider range of
security properties than before. In particular, one of the assumptions we made,
is that we should be able to specify properties and perform verification without
modifying the source code of the verified program. Thus, this work presents the
current state of the art of automated formal verification techniques offered by
the KeY system for industrial size JAVA CARD applications with respect to mean-
ingful, industry related security properties. This is discussed in Sect. 5. The main
conclusion is that full source code verification of JAVA CARD applications is abso-
lutely possible and in most part can indeed be achieved automatically, however,
such verification requires deep understanding of the specification issues, includ-
ing full understanding of the application being verified and the specificities of
the JAVA CARD environment. Therefore, we consider the KeY system, assuming
the approach we present in this work, mostly suitable for experienced users. The
properties that we consider here, originate from the area of static analysis [18],
however, to the best of our knowledge, no static analysis technique for thorough
treatment of those properties has been developed. We managed to formalise and
verify almost all of the properties using the KeY interactive theorem prover.
For the remaining properties we give concrete suggestions on how to treat them
with the KeY system. We give arguments why we think that interactive theorem
proving is a reasonable, and in fact in some ways better, alternative to static
analysis. This discussion is included in the second part of Sect. 5.

2 Background

The KeY Project. The work presented here is part of the KeY project1 [1]. The
main goals of KeY are to (1) provide deductive verification for a real world pro-
gramming language and to (2) integrate formal methods into industrial software
development processes.

For the first goal a deductive verification tool for JAVA source programs, the
KeY Prover, has been developed. The main target of the KeY system is the JAVA

CARD language – a stripped down version of JAVA used to program smart cards
(e.g., JAVA CARD does not support concurrency or large primitive data types, and
has a very small API). The verification is based on a specifically tailored version
of Dynamic Logic – JAVA CARD Dynamic Logic (JAVA CARD DL), which supports
most of sequential JAVA, in particular the full JAVA CARD language specification
including the JAVA CARD transaction mechanism. JAVA CARD DL and the KeY
Prover are designed to make the verification process as automated as possible.

For the second goal, the KeY Prover was integrated into a commercial CASE
tool, which uses UML (Unified Modelling Language) as the design language

1 http://www.key-project.org
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and OCL (Object Constraint Language) as the specification language. For the
present work however, due to specificities of the security properties in question,
and the necessity to operate on relatively low level of the specification, we took
the approach of using JAVA CARD DL directly as a specification language.

JAVACARD Dynamic Logic with Strong Invariants. We give a very brief introduc-
tion to JAVA CARD DL. We are not going to present or explain any of its sequent
calculus rules. Dynamic Logic [13] can be seen as an extension of Hoare logic.
It is a first-order modal logic with parametric modalities [p] and 〈p〉 for every
program p (we allow p to be any sequence of legal JAVA CARD statements). In
the Kripke semantics of Dynamic Logic the worlds are identified with execution
states of programs. A state s′ is accessible from state s via p, if p terminates
with final state s′ when started in state s.

The formula [p]φ expresses that φ holds in all final states of p, and 〈p〉φ ex-
presses that φ holds in some final state of p. Since JAVA CARD programs are deter-
ministic, there is exactly one final state (p terminates) or no final state (p does not
terminate). In JAVA CARD DL termination forbids exceptions to be thrown, i.e., a
program that throws an uncaught exception is considered to be non terminating
(or, terminating abruptly) [5]. The formula φ → 〈p〉ψ is valid if, for every state s
satisfying precondition φ, a run of the program p starting in s terminates, and in
the terminating state the postcondition ψ holds. The formula φ → [p]ψ expresses
the same, except that termination of p is not required, i.e., ψ needs only to hold if
p terminates. On top of that, a “throughout” modality ([[·]]) has been introduced
to JAVA CARD DL. As opposed to the box and diamond modalities, the through-
out modality requires that a certain property is maintained at all intermediate
program states, so for the throughout modality the semantics of a program is a
sequence of all states the execution passes through when started in the current
state (its trace). This allows us to ensure that a certain property should hold
even in case of an unexpected/abrupt termination (e.g., when the smart card is
ripped out from the terminal). We call such properties strong invariants. Strong
invariants are the central part of one of the discussed security properties.

JAVA CARD DL is axiomatised in a sequent calculus to be used in deductive
verification of JAVA CARD programs. The detailed description of the calculus can
be found in [2]. The calculus covers all features of JAVA CARD, such as exceptions,
complex method calls, or JAVA arithmetic. The full JAVA CARD DL sequent calcu-
lus is implemented in the KeY Prover. The prover itself is implemented in JAVA.
The calculus is implemented by means of so-called taclets [3], that avoid rules
being hard coded into the prover. Instead, rules can be dynamically added to the
prover. As a consequence, one can, for example, use different versions of arith-
metic during a proof: idealised arithmetic, where all integer types are infinite
and do not overflow, or JAVA arithmetic, where integer types are bounded and
exhibit overflow behaviour [6]. Full treatment of strong invariants also required
formalisation of JAVA CARD transactions in the logic. The transaction mecha-
nism [8] ensures that a piece of JAVA CARD program is executed to completion
or not at all. The theoretical aspects of integration of the throughout modality
and transactions into JAVA CARD DL are discussed in [4].
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Related Work. For us, the most interesting formal approaches to JAVA CARD ap-
plication development are those considered with source code level verification,
based on static checking and various program calculi. The work of Jacobs et
al. [14] is most closely related to our work and can partly serve as a brief overview
of verification techniques targeted at source code. It reports on successful ver-
ification attempts of a commercial JAVA CARD applet with different verification
tools: ESC/JAVA2 [10], Krakatoa [16], Jive [19], and LOOP [15]. The security
property under consideration, one of the properties we discuss in this paper, is
that only ISOExceptions are thrown at the top level of the applet. The analysed
applet is a commercial one, sold to customers. There are no technical details re-
vealed about the applet, so it is difficult to compare its complexity to our case
studies. Jacobs et al. detected subtle bugs in the applet with respect to a possible
uncaught ArrayIndexOutOfBoundsException (with LOOP and Jive tools), as
well as full verification (no exceptions other than ISOException, satisfied post-
condition, and preserved class invariant) of single methods with the Krakatoa
tool. The paper admits that expertise and considerable user interaction with the
back-end theorem provers (PVS and Coq) were required. It is also noted that
the provers are the performance and scalability bottlenecks in the verification
process. We will relate to those issues while we present our results.

3 Case Studies

In the remainder of this paper we will use two JAVA CARD case studies. The first
one is a JAVA CARD electronic purse application Demoney2 [17]. While Demoney
does not have all of the features of a purse application actually used in produc-
tion, it is provided by Trusted Logic S.A. as a realistic demonstration application
that includes all major complexities of a commercial program, in particular it is
optimised for memory consumption, which, as noted in [12], is one of the major
obstacles in verification. The Demoney source code is at present not publicly
available, so we are not able to disclose some of the technical details necessary
to fully discuss the verification problems associated with Demoney, but we hope
that what we present is convincing enough.

The second case study is an RSA based authentication applet for logging into
a Linux system (SafeApplet). It was initially developed by Dierk Bolten for
JAVA Powered iButtons3 and was one of the motivating case studies to introduce
strong invariants into JAVA CARD DL. Here, we use a fully refactored version of
SafeApplet, which is described in [20].

4 Security Properties

The security properties that we discuss here are directly based on the ones
described in [18], which we will refer to as the SecSafe document in the rest

2 We thank Renaud Marlet of Trusted Logic S.A. for providing the Demoney code.
3 http://www.ibutton.com
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of the paper. We considered all of the properties listed there, but few of them
we did not yet analyse in full detail. However, we still discuss those remaining
properties and the possibilities of handling them in the KeY system at the end
of this section. Let us start with a brief overview of the five properties that we
do discuss in detail.

Only ISOExceptions at Top Level (Sect. 3.4 of the SecSafe document). The ex-
ceptions of type ISOException are used in JAVA CARD to signal error conditions
to the outside environment (the smart card terminal). Such an exception results
with a specific APDU (Application Protocol Data Unit) carrying an error code
being sent back to the card terminal. To avoid leaking out the information about
error conditions inside the applet, a well written JAVA CARD applet should only
throw exceptions of type ISOException at top level.

No X Exceptions at Top Level. Due to its complexity, the first property is pro-
posed to be decomposed into simpler subproperties. Such properties say that
certain exceptions are not thrown, including most common ones (e.g., Null-
PointerException). A special case of this property is the next one.

Well Formed Transactions. This property consists of three parts, which say, re-
spectively: do not start a transaction before committing or aborting the previous
one, do not commit or abort a transaction without having started any, and do
not let the JAVA CARD Runtime Environment close an open transaction. The
JAVA CARD specification allows only one level of transactions, i.e., there is no
nesting of transactions in JAVA CARD. As we show later, this property can be
expressed in terms of disallowing JAVA CARD’s TransactionException.

Atomic Updates (Sect. 3.5 of the SecSafe document). In general, this property
requires related persistent data in the applet to be updated atomically. In the
context of our work this property is directly connected to the “rip-out” properties
and strong invariants, which we will use to deal with this property.

No Unwanted Overflow (Sect. 3.6 of the SecSafe document). This property sim-
ply says that common integer operations should not overflow.

In the following we will go through these security properties one by one. For
each of the properties we will give a general guideline on how to formalise it in
JAVA CARD DL, give an example based on one or both of the case studies, give
comments about the verification of a given property and possibly discuss some
more issues related to the property. Due to space restrictions and the lengthy
code snippets in our examples, we are going to show abbreviated versions of
the examples. A technical report discussing all the examples in full detail is
available [21].

4.1 Only ISOExceptions at Top Level

The KeY system provides a uniform framework for allowing and disallowing
exceptions of any kind in JAVA CARD programs. We explain this with a general
example. Given some applet MyApplet one can forbid aMethod to throw any
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exception other than ISOException in the following way (this is the actual
syntax used by the KeY Prover, we will explain it shortly):

java {"source/"}

program variables { MyApplet self; }

problem {
preconditions ->
<{ method-frame(MyApplet()): {

try { self.aMethod(); } catch(ISOException ie) {}
} }> true }

This is a proof obligation that is an input to the KeY Prover. The first section in
the file tagged with java tells the prover where the source code of the program
to be verified is. The program variables section defines all the program/JAVA

variables that are going to be used in the proof obligation. The problem section
defines the actual proof obligation. The string preconditions is a place holder
for the preconditions necessary to establish the correct execution of aMethod.
One of the obvious conditions to put there, is that the self reference is not
null: !self = null. With this proof obligation we want to prove that a call to
aMethod either terminates normally or with an exception of type ISOException.
The actual call to the method, self.aMethod(), appears inside the diamond
modality (<{}>) and is wrapped with some additional statements. The diamond
requires the program to terminate normally – the trivial postcondition true is
only satisfied if no exceptions are thrown. So, to specify that a program throws a
certain kind of exception only, one wraps the actual program with a try-catch
statement catching the particular kind of exception. This way, if our method
terminates normally or throws an ISOException (only), the program inside the
diamond still terminates normally, making the proof obligation valid. In case
any other kind of exception is thrown the proof obligation becomes invalid. The
method-frame statement tells the prover that our program is executed in the
context of the MyApplet class (e.g., such information is necessary if aMethod is
private). The method-frame statements is one of the extensions to JAVA syntax
used in JAVA CARD DL to deal with scopes of methods, method return values,
etc. We want to stress here, that this extension is a superset of JAVA, not a
subset – any valid JAVA/JAVA CARD program can be used inside the modality.

Let us now demonstrate this property with real examples. First we give a
specification of Demoney ’s method verifyPIN. This method is common to al-
most every JAVA CARD applet, it is responsible for verifying the correctness of
the PIN passed in the APDU. If the PIN is correct the method sets a global flag
indicating successful PIN verification and returns, otherwise an ISOException
with a proper status code (including the number of tries left to enter the cor-
rect PIN) is thrown. The proof obligation below specifies that verifyPIN is
only allowed to throw ISOException. The example is abbreviated; however, no
important issues are omitted:
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program variables {
fr.trustedlogic.demo.demoney.Demoney self;
javacard.framework.APDU apdu; ... }

problem {
// General preconditions for verifyPIN, e.g., !self = null & ...
// PIN well formed preconditions: !self.pin = null & ...
// ISOException well formed preconditions: ...

-> <{ method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
try{ self.verifyPIN(apdu,offset,length); }catch(ISOException ie){}

} }> true }

There are numerous preconditions to guard the execution of verifyPIN. It took
some trial and error steps to get all the preconditions right (we discuss this issue
in detail in Sect. 5). Missing even the smallest one renders the program not
terminating normally. This proof obligation is proven automatically by the KeY
Prover in slightly more than 3 minutes4 with less that 10 000 proof steps.

The SecSafe document requires that exceptions other than ISOException
are not thrown as a result of invoking the entry point of the applet. For us, it
means that we would have to prove our property for the applet entry method
process. At the current stage of our experiments we found it technically difficult
to perform a proof of this kind for the applet of the size of Demoney. We know
however, that such a proof can be modularised (see next example).

The second example is based on SafeApplet. Among other things, SafeApp-
let keeps a table of registered users that can be authenticated with the applet.
For each user a unique user ID and a set of RSA encryption keys are stored.
Method dispatchDeleteKeyPair is responsible for unregistering a given user
ID, it takes an APDU, which stores the user ID to be unregistered. In case no user
with such an ID is registered an ISOException with a proper code (SW USER UN-
REGISTERED) is thrown, otherwise the proper entry in the user table is removed:

// APDUException, ISOException well formed, ...
& !self = null & !self.temp = null & ...
-> <{ method-frame(SafeApplet()):{

finishedWithISOEx = false; finishedOK=false;
try { self.dispatchDeleteKeyPair(apdu); finishedOK = true;
}catch(ISOException e1){ finishedWithISOEx = true; }

} }> (finishedOK = TRUE | (finishedWithISOEx = TRUE &
ISOException.instance.theSw[0] = SafeApplet.SW_USER_UNREGISTERED))

Among other things, the precondition says that the entries in the user table are
not null. In the postcondition we also want to specify that the ISOException
that might be thrown contains the right status code. Because of this, we need
to distinguish between two cases in the postcondition: either the method termi-
nates normally or an ISOException is thrown with a proper status code – two
boolean variables (finishedOK and finishedWithISOEx) keep track of this. The
way the program in the modality is constructed ensures that those two variables
cannot be true at the same time (this can also be verified).
4 All the benchmarks presented here were run on a Pentium IV 2.6 GHz Linux system

with 1.5 GB of memory. The version of the KeY system used is available on request.
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Proof Modularisation. This proof obligation is proved automatically with the
KeY Prover in about 15 minutes with less than 40 000 proof steps. This may seem
to be a lot. The reason for such performance is threefold. First of all, there is a
loop involved, which goes through the table of users. This loop is symbolically
unwound step by step and the proof size depends on the actual constant value
of MAX USERS (equal to 5). Secondly, the method performs a lot of preliminary
work before the users table is modified. Finally, for this particular benchmark
result, there was no proof modularisation used whatsoever – when a method call
is made in a program the prover replaces the call with the actual method body
and executes it symbolically. Instead, one can use the specification of the called
method – it is enough to establish that the precondition of the called method is
satisfied, and then the call can be replaced with the postcondition of the called
method. Obviously, one also has to prove that the called method satisfies its spec-
ification. One limitation of this technique is that the method specification have
to include so called modification conditions [22, 7] – a complete set of attributes
that the method possibly modifies. Factoring out method calls this way shortens
the total proof effort even in the simplest cases – although a method might be
called only once in a program, due to proof branching, it may need to be analysed
in the proof multiple times. For comparison, we applied such modularisation to
our last example – we used specification for just one method that contains a loop.
The resulting proof took less that one minute (5 000 proof steps), the side proof
establishing that the factored out method satisfies its specification took less than
2 minutes (12 000 proof steps) – the time performance increased 5 times.

4.2 No X Exceptions at Top Level

As already mentioned, the KeY system provides a uniform framework for dealing
with exceptions. The JAVA CARD DL calculus rules and the semantics of the dia-
mond modality require that no exceptions are thrown whatsoever. In particular,
the calculus is carefully designed to establish that each object that is derefer-
enced is not null, that the indices used to access array elements are within
array bounds, etc. So, as long as the total correctness semantics is used, the
KeY Prover establishes absence of all possible exceptions. Still, for the sake of
consistency, one can disallow only one kind of exception this way:
preconditions & unwantedException = FALSE ->
<{ method-frame(MyApplet()): {

try { self.aMethod(); } catch(Exception e) {
unwantedException = (e instanceof UnwantedException); } }

}> (unwantedException = FALSE)

Here, the boolean variable unwantedException will become true only when the
undesired exception is thrown in aMethod, thus the above proof obligation states
that no UnwantedException is thrown by aMethod.

4.3 Well Formed Transactions

The first two parts of this property say that a transaction should not be started
before committing or aborting the previous one, and that no transaction should
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be committed or aborted if none was started. This boils down to saying that no
TransactionException related to well-formedness is thrown in the program.
Since in our model of JAVA CARD environment we do not consider transaction
capacity, we can simplify this part of the property to “No TransactionExcep-
tion is thrown in the program.” – a special case of the previous property.

The last part of the property says that no transactions should be left open
to be closed by JCRE. The information about open transactions is kept track
of by JCRE and can be accessed through the JAVA CARD API (static attribute
JCSystem.transactionDepth). It is quite straightforward to specify that a given
method does not leave an open transaction:

preconditions & JCSystem.transactionDepth = 0
-> <{ method-frame(MyApplet()): { self.aMethod(); }

}> (JCSystem.transactionDepth = 0) }

The precondition states that there is no open transaction before aMethod is
called. This is necessary in case aMethod is top-level and does not check for an
open transaction before it starts its own. After aMethod is finished we require
the transactionDepth to be equal to 0 again, this ensures that there is no open
transaction. Also, what is implicit, is that no TransactionException is thrown.
We will briefly illustrate this property with a real example in the next section.

4.4 Atomic Updates

This property requires related persistent data in the applet to be updated atomi-
cally. Strong invariants seem to be the right technique to deal with this property –
as we stated already, they are used to specify consistency of data at all times,
so that in case an abrupt termination occurs, the data (in particular, related
data) stay consistent. We will illustrate this property briefly with the same ex-
ample that is discussed in full in [12], for this work however we were able to use
the real Demoney applet instead of the simplified one used in [12]. One of the
routines of the electronic purse is responsible for recording information about
the purchase in the log file. Among other things, the current balance after the
purchase is recorded in a new log entry. As the SecSafe document points out ac-
curately, when atomic consistency properties are considered, one has to be able
to say what it means for the data to be related. In our example we want to state
that the current balance of the purse is always the same as the one recorded in
the most recent log entry. By using JAVA CARD transaction mechanism, method
performTransaction is responsible for debiting the purse balance and updat-
ing the log file in one atomic step. In JAVA CARD DL, to express that a strong
invariant is preserved, the throughout modality is used:

JCSystem.transactionDepth = 0 & !self = null & ...
// Strong Invariant: The current balance of the purse is equal to the
// balance recorded in the most recent log entry: self.balance = ...

-> [[{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {
self.performTransaction(amount, apduBuffer, offsetTransCtx); }

}]] // Strong Invariant: same as above
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An important part of the precondition is the one saying that the strong invariant
holds before the method is executed. This proof obligation is proved automati-
cally in 12 minutes with less than 12 000 proof steps. This particular method uses
two loops to copy array data, which were not factored out with modularisation,
so we consider this a relatively good result. Modularisation has been used for
some other, simple methods, however, we have to point out here, that in case
of proof obligations involving the throughout modality and transactions using
method specifications is not possible in general, and in cases where it is possible
it has to be used with caution.

This proves that the related data stays consistent throughout the execution of
performTransaction. Since a JAVA CARD transaction is involved in this method
it is also desirable to prove well-formedness of transactions for performTrans-
action, as stipulated in the previous section:
// Mostly the same preconditions as for the previous proof obligation
-> <{method-frame(fr.trustedlogic.demo.demoney.Demoney()): {

self.performTransaction(amount, apduBuffer, offsetTransCtx); }
}> (JCSystem.transactionDepth = 0)

This is proved automatically in 11 minutes with less than 12 000 proof steps.
We proved a similar property for SafeApplet, saying that all the registered

users have a properly defined set of private and public encryption keys at all
times. Here we only make two comments about the proof. First, there are no
transactions used in SafeApplet to ensure data consistency, instead additional
fields in objects associated with consistency property are used and accessing of
those objects is carefully coded. This results in a more complex proof. Second,
during the proof, some small amount of manual interaction with the prover was
necessary, namely 8 manual quantifier instantiations were required, otherwise
the proof proceeded automatically and took 3 minutes to finish.

4.5 No Unwanted Overflow

Finally, we deal with a property related to integer arithmetic: additions, subtrac-
tions, multiplications and negations must not overflow. To deal with all possible
issues related to integer arithmetic, in particular overflow, the KeY Prover uses
three different semantics of arithmetic operations [6]. The first semantics treats
the integer numbers in the idealised way, i.e., the integer types are assumed to be
infinite and, thus, not overflowing. The second semantics bounds all the integer
types and prohibits any kind of overflow. The third semantics is that of JAVA,
i.e., all the arithmetic operations are performed as in the JVM, in particular they
are allowed to overflow and the effects of overflow are accurately modelled. Thus,
to deal with overflow properties, it is enough for the user to choose appropriate
integer semantics in the KeY Prover. Based on the SecSafe document, below is
an example of a badly formed program with respect to overflow:
inShort(balance) & inShort(maxBalance) & inShort(credit) &
balance > 0 & maxBalance > 0 & credit > 0 ->
<{ try { if (balance + credit > maxBalance) throw ie;

else balance += credit;
}catch(ISOException e){} }> balance > 0
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The problem is that the balance + credit operation can overflow making the
condition inside the if statement false resulting in a balance being less than
0 after this program is executed. When processed by the KeY Prover with the
idealised integer semantics switched on, this proof obligation gets proved quickly.
When the arithmetic semantics with overflow control is used, this proof obliga-
tion is not provable. The fix to the program to avoid overflow is to change the if
condition to balance > maxBalance - credit. The modified proof obligation
is provable with both kinds of integer semantics.

4.6 Other Properties

We have just shown how to formalise and prove five kinds of security properties
from the SecSafe document. Here we briefly discuss the remaining ones.

Memory Allocation. Due to restricted resources of a smart card, one of the re-
quirements on a properly designed JAVA CARD applet is the constrained memory
usage: bounded dynamic memory allocation and no memory allocation in certain
life stages of the applet. This seems like a problem suitable for static analysis –
in general there is no need for precise analysis of the control flow, although, for
example, if memory allocation is performed inside a loop, a precise analysis is
required to find out the loop bounds. Either way, we believe that this property in
general can be formalised and proved with the KeY system as well. The main idea
is the following. The KeY Prover maintains a set of implicit attributes for every
object to model certain aspects of the JAVA virtual machine, in particular object
creation. There is no obstacle to introduce a new static implicit attribute to our
JAVA model that would keep track of the amount of allocated memory or the
possibility to allocate memory. However, due to optimisation of inheritance and
interface representation in JVM, the actual memory consumption may differ for
each JVM implementation. Thus, keeping precise record of the allocated memory
is not so simple and thorough treatment of this problem requires further research.
At the moment, we could only give approximate figures for memory usage.

Conditional Execution Points. This property says that certain program points
must only be executed if a given condition holds. Again, this is a subject to
static analysis (e.g., ESC/JAVA2 provides means to annotate and check condi-
tions at any program point), but it can also be done with theorem proving by
introducing a generalised version of the throughout modality. The throughout
modality requires that a property holds after every program statement. For the
generalised case, such a property would have to hold only in certain parts of the
program. So there are no theoretical obstacles here, but due to less priority this
has not yet been implemented in KeY.

Information Privacy and Manipulation of Plain Text Secret. Those two prop-
erties fall into the category of data security properties. As it has been shown
in [9], formalising and proving data security properties can in general be inte-
grated into interactive theorem proving, however no experiments on real JAVA

CARD examples were performed so far.
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5 Discussion

Lessons Learned. Here we sum up the practical experience we gained during
the course of this work. The main lesson is that the current state of software
verification technology that at least the KeY system offers makes the verification
tasks feasible. Schematic formalisation of the security properties from the SecSafe
document was easy, however, applying it to concrete examples was much more
tricky. We found getting right all the preconditions to guard the execution of
a given method very difficult. This particularly holds when normal termination
is required. Constructing the preconditions requires deep understanding of the
program in question and the workings of the JCRE. However, calculation of the
preconditions can be tool supported as well:

In [14] ESC/JAVA2 is used to construct preconditions. In short, the tool is
run interactively on an unspecified applet, which results in warnings about pos-
sible exceptions. Such warnings are removed step by step by adding appropri-
ate expressions to the precondition. Alternatively, as [14] suggests, the weakest
precondition calculus of the Jive system could be used by running the proof
“backwards”, i.e., by starting with a postcondition and calculating the neces-
sary preconditions. This however, has not been presented in the paper and to
our understanding the approach has certain limitations.

The KeY system itself provides a functionality to compute specifications for
methods to ensure normal termination [23]. The basic idea behind computing
the specification is to try to prove a total correctness proof obligation. In case it
fails, all the open proof goals are collected and the necessary preconditions that
would be needed to close those goals are calculated. There are two disadvantages
to this technique: (1) for the proof to terminate the preconditions that guard
the loop bounds cannot be omitted, so there is no way to calculate preconditions
for loops, they have to be given beforehand, (2) proofs have to be performed the
same way for computing the specification as it is done when one simply tries
to prove the obligation, so computing the specification is in fact a front-end for
analysing failed proof attempts in an organised fashion. Moreover, the specifi-
cations produced can be equally hard to read as is analysing the failed proof
attempt manually. Despite all this, we still find the specification computation
facility of the KeY system quite helpful for proof obligations that produce small
failed proof attempts or at least ones containing only few open proof goals.

Proving partial correctness also requires caution. A wrong or unintended pre-
condition can render the program to be always terminating abruptly. This makes
any partial correctness proof obligation trivially true. Thus, in cases where a par-
tial correctness proof is necessary (e.g., strong invariants), one should accompany
such a proof with an additional termination property, as we did in Sect. 4.4.

To enable automation, the KeY Prover and the JAVA CARD DL are designed
in a way not to bother the user with the workings of the calculus and the
proof system. However, we have realised that proper formulation of the DL
expressions can further support automation. We have also introduced a small
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number of additional simplification rules for arithmetic expressions. Such rules
considerably simplify the proof, but introducing them, although being relatively
easy, requires a little bit more than the basic understanding of JAVA CARD DL.
Moreover, each introduced rule has to be proven sound. The rules are very simple
and we have means to do it automatically with the KeY system [3], but due to
constantly changing set of those rules, we decided to leave the correctness proofs
out for the time being.

Our experimental results show that proof modularisation greatly reduces the
verification effort. The problem of modularising proofs using method specifica-
tions has been well researched [22, 7], but has been implemented in the KeY
system only recently, thus, we gained relatively little experience here. So far we
have learnt that using method specification in the context of the throughout
modality is not always possible and has to be done with care.

Finally, one of the goals of formal verification is to find and eliminate bugs.
So far, we have not found any in our case studies. We believe the reason for
this is twofold. First, the properties we considered so far were relatively simple
and the methods were expected not to contain bugs related to those properties.
Second, neither of the applications we analysed as a whole, only parts of them.
In particular, the bugs often occur at the points where the methods are invoked,
due to an unsatisfied method precondition.

Static Analysis vs. Interactive Theorem Proving. The results of this paper show
that we are able to formalise and prove all of the security properties defined in the
SecSafe document. Many of the properties would require quite advanced static
analysis and, as far as we know, no such static analysis technique has been devel-
oped so far. Moreover, we believe that some properties go beyond static analysis,
e.g., certain aspects of memory allocation (Sect. 4.6) require accurate analysis
of the control flow. Furthermore, each single property would probably require a
different approach in static analysis, while the KeY Prover provides a uniform
framework. For example, all properties related to exceptions are formalised in
the same, general way, and in fact can be treated as one property. Also, dealing
with integer overflow is done within the uniform framework of different integer
semantics, that cover all possible overflow scenarios.

Therefore, we consider interactive theorem proving as a feasible alternative
to static analysis. More generally, deep integration of static analysis with our
prover is a subject of an ongoing research [11]. One argument that speaks for
static analysis is full automation. However, our experiments show that the KeY
system requires almost no manual interaction to prove the properties we dis-
cussed. Also, the time performance of the KeY prover seems to be reasonable,
although the work on improving it continues. On the other hand, as we noticed
earlier, constructing proof obligations require some user expertise. In our opinion
however, this is something that is difficult to factor out when serious formal ver-
ification attempts are considered, no matter if theorem proving or static analysis
is used as the basis.
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6 Summary and Future Work

We have shown how most of the security properties of the industrial origin for
JAVA CARD applications can be formalised in JAVA CARD DL and proved, for the
most part automatically, with the KeY Prover. Most of the properties were illus-
trated by real-life JAVA CARD applets. Considerable experience related to formal
verification has been gained during the course of this work. This experience indi-
cates that JAVA CARD source code verification, at least using the KeY system, has
recently become a manageable and relatively easy task, however, for scenarios
like the one presented in this work, user expertise is required. Two main areas for
improvement are clearly the modularisation of the proofs and tool support for
calculating specifications (more precisely, preconditions). Our future work will
concentrate on those two aspects, to reach full, truly meaningful verification of
JAVA CARD applications with as much automation as possible. We feel that the
performance results should already be acceptable by software engineers, how-
ever, the work on improving the speed of the prover will continue. Finally, our
experience clearly shows that interactive theorem proving is a reasonable alter-
native to static analysis – we plan to further explore this area by concentrating
on the few properties we only discussed briefly here.
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